Елена Середкина - Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия.
- Название:Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия.
- Автор:
- Жанр:
- Издательство:Пермский Государственный Технический Университет
- Год:2009
- Город:Пермь
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Елена Середкина - Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия. краткое содержание
Приведены отрывки из работ философов и историков науки XX века, в которых отражены основные проблемы методологии и истории науки. Предназначено для аспирантов, соискателей и магистров, изучающих историю, философию и методологию науки.
Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Исследование Фреге не было завершено в первую очередь потому, что оно было применено только к арифметике, а не к другим ветвям математики. Во-вторых, потому, что его посылки не исключали некоторых противоречий, которым оказались подвержены все прошлые системы формальной логики. В сотрудничестве с Уайтхедом мы попытались устранить оба этих недостатка в книге “Principia Mathematical, которой, однако, недостает окончательности в некоторых фундаментальных пунктах (особенно в аксиоме сводимости). (Уайтхед, Альфред Норт (1861–1947) — английский математик и философ, одно время был соавтором и коллегой Рассела по Кембриджскому университету. Впоследствии его деятельность проходила в США. Отойдя от логико-математической проблематики, он стал развивать “философию организма”, заниматься эволюционной космологией, вопросами связи науки и религии — прим. ред.). Но вопреки этим недостаткам, я думаю, никто из читавших данную книгу не будет оспаривать ее основное содержание, а именно, что вся чистая математика может быть выведена из некоторых идей и аксиом формальной логики с помощью логики отношений, без обращения к каким-либо новым неопределенным понятиям или недоказанным утверждениям. Технические методы математической логики, которые разработаны в этой книге, мне представляются весьма мощными и способными обеспечить новый инструмент для обсуждения многих проблем, которые до сих пор оставались предметом философской неопределенности. Книга “Понятие природы и принципы познания природы” Уайтхеда может служить иллюстрацией к тому, что я имею в виду.
Когда чистая математика строится как дедуктивная система, то есть как множество всех тех утверждений, которые могут быть выведены из заданных посылок, тогда становится очевидным, что если мы убеждены в истинности чистой математики, то не потому лишь, что убеждены в истинности множества посылок. Некоторые из посылок являются гораздо менее очевидными, чем их следствия, и мы в них убеждены главным образом из-за их следствий. Это происходит всегда, когда наука строится как дедуктивная система. Не самые простые в логическом отношении, а потому наиболее очевидные утверждения системы составляют основную часть наших доводов для веры в систему. Для эмпирических наук это очевидно. Электродинамика, например, может быть сконцентрирована в уравнениях Максвелла, но в эти уравнения мы верим потому, что существуют эмпирические истины для некоторых их логических следствий. Точно то же самое имеет место в области чистой логики. Первым принципам логики — по крайней мере некоторым из них — мы верим не по непосредственной их оценке, а на основании их следствий. Эпистемологический вопрос “Почему я убежден в этом множестве утверждений”, совершенно отличается от логического вопроса — “Какова наименьшая и логически простейшая группа утверждений, из которой может быть выведено это множество утверждений?” Наши доводы для веры в логику и чистую математику являются отчасти лишь индуктивными и вероятными, вопреки тому факту, что в своем логическом порядке утверждения логики и чистой математики следуют из посылок логики посредством чистой дедукции. Я считаю этот пункт важным, поскольку ошибки обязаны своим возникновением ассимиляции логического порядка эпистемологическим, а также и, наоборот, ассимиляции эпистемологического порядка логическим. Единственный способ, посредством которого деятельность математической логики бросает свет на истинность или ложность математики, связан с опровержением предполагаемых антиномий. Это показывает, что математика может быть истинной. Но показать, что математика является истинной, потребует других методов и других рассуждений.
Один из важных эвристических принципов, который Уайтхед и я нашли путем опыта для применения в математической логике и тем самым в других областях, представляет собой форму бритвы Оккама. Когда некоторое множество предполагаемых сущностей (entities) имеет чисто логические свойства, то оказывается, что в значительном большинстве случаев эти предполагаемые сущности могут быть заменены чисто логическими структурами, построенными из сущностей, которые не имеют таких чистых свойств. В подобном случае при интерпретации основной части утверждений, о которых до сих пор думали как: о предполагаемых объектах, мы можем заменить логические структуры, не изменяя в чем-либо детали этой части рассматриваемых утверждений. Это дает экономию, потому что сущности с чисто логическими свойствами всегда выводятся, и если утверждение, в котором они встречаются, может быть интерпретировано без этого вывода, тогда основание для вывода отпадает и наша основная часть утверждений не будет нуждаться в сомнительном шаге. Этот принцип может быть сформулирован в следующей форме “Всюду, где возможно, заменяйте конструкциями из известных сущностей выводы к неизвестным сущностям”.
Использование этого принципа весьма разнообразно, но непонятно в деталях для тех, кто не знает математическую логику. Первый раз, когда я с ним встретился, я назвал его “принципом абстракции” или “принципом освобождения от абстракции”. (Имеется в виду “Наше познание внешнего мира как поле для научного метода в философии” (1914) — прим. ред.). Этот принцип применим в случае любого симметричного и транзитивного отношения, такого, как равенство. Мы склонны заключить, что подобные отношения возникают из наличия некоторого общего качества. Это может быть или не быть истинным, вероятно, оно истинно в одних случаях и не истинно в других. Однако всем формальным целям общего качества может служить членство в группе терминов, имеющих указанное отношение к данному термину. Возьмем, например, величину. Предположим, что мы имеем группу стержней одинаковой длины. Нетрудно предположить, что существует некоторое качество, названное их длиной, которое является для них общим. Но все утверждения, в которых это предполагаемое качество встречается, будут сохранять свое истинностное значение неизменным, если вместо “длины стержня х” мы возьмем членство группы всех тех стержней, которые имеют ту же длину, “что и х”. В различных специальных случаях, например, при определении действительных чисел, возможна более простая конструкция.
Самый важный пример этого принципа — определение Фреге кардинального числа данного множества элементов как класса всех множеств, которые “подобны” данному множеству, где два множества “подобны”, когда существует взаимно-однозначное соответствие, чьей областью служит одно множество, а обратной областью — другое множество. Таким образом, кардинальное число есть класс всех тех классов, которые подобны данному классу. Это определение оставляет неизменным истинностные значения всех утверждений, в которых встречаются кардинальные числа, и избегает заключений к множеству объектов, называемых кардинальными числами, которые никогда не были необходимы, кроме как для понимания арифметики, а теперь больше не нужны и для такой цели.
Читать дальшеИнтервал:
Закладка: