Николай Лосский - Чувственная, интеллектуальная и мистическая интуиция

Тут можно читать онлайн Николай Лосский - Чувственная, интеллектуальная и мистическая интуиция - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Чувственная, интеллектуальная и мистическая интуиция
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    5 – 250-02498 – X
  • Рейтинг:
    4.25/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Николай Лосский - Чувственная, интеллектуальная и мистическая интуиция краткое содержание

Чувственная, интеллектуальная и мистическая интуиция - описание и краткое содержание, автор Николай Лосский, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

МОСКВА ИЗДАТЕЛЬСТВО «РЕСПУБЛИКА» 1995

(Мыслители XX века)

Книга содержит труды русского философа Николая Онуфриевича Лосского (1870-1965), созданные в эмиграции в зрелый период его творчества и впервые издающиеся у нас.

Автор предстаёт здесь не только как глубокий, оригинальный мыслитель, но и как талантливый популяризатор. Публикуемые работы всесторонне раскрывают особенности его мировоззрения – своеобразного варианта персоналистической философии – и его учения об интуитивном пути познания, включающем разные формы интуиции, в том числе и такую неоднозначно толкуемую её разновидность, как мистическая интуиция.

Издание рассчитано на тех, кого интересуют проблемы отечественной и мировой философии, теории религии и науки.

Чувственная, интеллектуальная и мистическая интуиция - читать онлайн бесплатно полную версию (весь текст целиком)

Чувственная, интеллектуальная и мистическая интуиция - читать книгу онлайн бесплатно, автор Николай Лосский
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чтобы мыслить в чистом виде идеальные формы реального бытия достаточно отвлечься от чувственных содержаний восприятия, выделить идеальные формы из идеально-реального предмета (abstrait есть extrait *, говорит Тэн), а вовсе не нужно конструировать их, прибегать к «идеализации» и т. п. приемам.

Привычка созерцать пространственные формы в связи с реальными вещами так глубоко укоренена, что даже и математическое мышление о них осуществляется с помощью реальных символов, точек и линий начерченных мелом, и т. п. Отсюда возникает ложная мысль, будто геометрия основана на наглядных очевидностях, на том, что Кант назвал reine Anschauung *. На деле, как и все науки об аспектах отвлеченного логоса, геометрия разрабатывается посредством чистого мышления, т. е. посредством интеллектуальной интуиции. Это чистое мышление состоит из интенсиональных актов, прослеживающих идеальные данности и их законосообразные связи, имеющие характер синтетической необходимости следования.

Поскольку в суждении субъект и предикат связаны отношением синтетической необходимости следования, оно не может быть обосновано одною лишь ссылкою на закон тожества, противоречия и исключённого третьего. Поэтому философ, придерживающийся ложной мысли, будто всякое логическое обоснование имеет аналитический характер, т. е. представляет собою тавтологию, питает недоверие к движению мысли, слишком ярко обнаруживающему синтетическое следование: смелый поступательный ход мысли кажется ему иррациональным логически необоснованным. Недоверие усиливается, когда такой ход мысли осуществляется в связи с пользованием наглядными символами: это обстоятельство побуждает к дополнительной ошибочной мысли, что иррациональная наглядность есть источник иррационального движения мысли. Примером может служить суждение «между каждыми двумя точками всегда есть ещё точка», мыслимое в связи с символическим изображением двух точек, причём под точкою разумеется граница линии, не имеющая никакого протяжения, но обладающая положением в пространстве.

Действительно, такие суждения ставят философа лицом к лицу со свойствами мышления и бытия, которые представляются чудесными с точки зрения индивидуалистического эмпиризма, позитивизма и всякого антиметафизицизма: они не могут быть обоснованы ни индуктивно ни дедуктивно и тем не менее предстоят уму, как бесспорные истины вычитываемые умом прямо из состава идеального предмета созерцания который оказывается связанным бесчисленными нитями с множеством других идеальных предметов, образующих стройное бесконечно содержательное органическое целое. Ум человека и тем более разумность мира предстают в таком величии, которое обязывает к развитию не менее величественной системы метафизики, утверждающей духовную и более того, божественную основу мира. Исследователи, отказывающиеся вступить на путь такой метафизики, осуществляют все новые попытки построить ту или иную из основных наук (логику, арифметику, геометрию) как строго логически развертывающуюся систему, обходясь без ссылки на первичные наглядные или идеальные данности, без ссылки на интуицию, открывающую основные свойства бытия. В числе таких попыток особенного внимания заслуживает обоснование геометрии Д. Гильбертом с помощью метода, который он называет аксиоматическим.

Гильберт начинает свой труд «Grundlagen der Geometrie» словами: «Мы мыслим три различные системы вещей: вещи первой системы мы называем точками», вещи второй системы – прямыми, вещи третьей системы – плоскостями. «Мы мыслим точки, прямые и плоскости в известных взаимных отношениях и обозначаем эти отношения словами «лежать», «между», «параллельный», «конгруентный», «непрерывный»; точное и для математических целей полное описание этих отношений производится посредством аксиом геометрии». Далее Гильберт перечисляет эти аксиомы, разделенные им на пять групп. Вторая группа этих аксиом, называемая им группою аксиом расположения (Axiome der Anordnung), служит определением понятия «между». Она состоит из четырех аксиом; приведём три из них: 1) если А, В, С – точки прямой и В лежит между А и С, то В лежит также между С и А; 2) если А и С суть две точки прямой, то существует всегда по крайней мере одна точка В, которая лежит между А и С, и по крайней мере одна точка D такая, что С лежит между А и D; 3) среда трёх точек прямой всегда есть одна, и только одна, которая лежит между двумя другими [CCLXXXIV].

Выводы из аксиом Гильберт производит, пользуясь только определенными через аксиомы отношениями «между», «лежат» и т. д., а не какими-либо свойствами точек, прямых и плоскостей, дополнительными к этим отношениям и выводам из них. Неудивительно поэтому, что в дальнейшем оказывается следующее. Установленная им совокупность положений имеет значение не только для точек, прямых и плоскостей евклидовского пространства, но и для других объектов, напр. для линейного трёхмерного числового множества (lineare dreidimensionale Zahlenmenge) и вообще для всякого линейного трёхмерного многообразия [CCLXXXV].

Таким образом, Гильберту принадлежит заслуга разработки науки более общей, чем геометрия евклидовского пространства. Не следует однако, думать, будто метод обоснования этой науки принципиально отличен от традиционного метода евклидовской геометрии в тех его чертах, которые объясняются изложенным выше учением об отвлеченном логосе. Следующие три отличия могут быть ошибочно приписаны ему.

1. Гильберт формулирует свои аксиомы и выводы из них, не пользуясь никакими наглядными чувственными представлениями; его точки прямые и плоскости суть условные термины, обозначающие предметы которые могут совсем не быть элементами пространства. Но и в геометрии Евклида, где точки, прямые и плоскости суть элементы пространства, из этого ещё не следует, будто они даны как чувственно наглядные представления: они суть идеальные объекты, имеемые в виду в понятии т. е. доступные мысли, а не чувственному созерцанию. Правда, в евклидовской геометрии мышление осуществляется в связи с чувственным созерцанием наглядных реальных символов, однако не реальная сторона этих символов, а идеальный аспект их есть предмет мышления: знание что «две евклидовские прямые не замыкают пространства», иллюстрируется символом, дающим чувственное впечатление, но удостоверяется не этою чувственною данностью, а содержащимся в ней идеальным моментом неизменности направления прямой линии.

Во всеобщей геометрии Гильберта знание, что две прямые имеют не более одной общей точки, есть вывод из аксиом связи; но в геометрии евклидовского пространства это знание может быть получено более непосредственным путем, интеллектуальным созерцанием евклидовских прямых.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Николай Лосский читать все книги автора по порядку

Николай Лосский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Чувственная, интеллектуальная и мистическая интуиция отзывы


Отзывы читателей о книге Чувственная, интеллектуальная и мистическая интуиция, автор: Николай Лосский. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x