Жан Брикмон - Интеллектуальные уловки. Критика современной философии постмодерна
- Название:Интеллектуальные уловки. Критика современной философии постмодерна
- Автор:
- Жанр:
- Издательство:Дом интеллектуальной книги
- Год:2002
- Город:Москва
- ISBN:5-7333-0200-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Жан Брикмон - Интеллектуальные уловки. Критика современной философии постмодерна краткое содержание
Книга родилась из популярного сейчас розыгрыша, в котором один из нас опубликовал в американском культурологическом журнале Социальный Текст пародийную статью, напичканную бессмысленными, но, к сожалению, достоверными цитатами о физике и математике известных французских и американских интеллектуалов…
…чего именно мы хотим добиться? Не так много, но и не так мало. Мы показываем, что такие известные интеллектуалы, как Лакан, Кристева, Иригарэй, Бодрийар и Делез, неоднократно злоупотребляли научными концепциями и терминологией: или используя научные идеи полностью вне контекста, никак не обосновывая — отметим, что мы не против перенесения концепций из одной области в другую, а возражаем лишь против таких необоснованных переносов — или же кичась научным жаргоном перед своими читателями, которые не являются учеными, не обращая никакого внимания на его адекватность и даже значение. Мы не считаем, что это умаляет значение остальной части их работы, судить о которой мы не беремся.
http://fb2.traumlibrary.net
Интеллектуальные уловки. Критика современной философии постмодерна - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Эти абзацы лишены всякого смысла, хотя Кристева довольно-таки ловко связывает между собой математические термины. Но дальше — больше:
Допустив, что поэтический язык является формальной системой, построение теории которой может вестись при помощи теории множеств , мы в то же время вправе заметить, что функционирование поэтического значения подчиняется принципам, на которые указывает аксиома выбора. Она утверждает, что существует однозначное соответствие, представленное определенным классом, который соединяет с каждым из непустых множеств теории (системы) один из своих элементов.
(∃А) [ Un (A) (x) [~ Em (x) ⊃ (∃y) [y∈x?yx? ∈A]]]
[ Un (A) — «A однозначно»; Em (x) — «класс x» — пуст.]
Иначе говоря, можно одновременно выбрать один элемент в каждом из непустых множеств, которыми мы занимаемся. В таком изложении аксиома выбора применима в нашем универсуме? входящем в ПЯ. Аксиома уточняет, почему любая последовательность x содержит послание книги. (Кристева 1969, с. 189, курсив в оригинале)
Эти абзацы (так же, как и следующие за ними) служат блестящей иллюстрацией жестоким словам социолога Станислава Андрески, которые мы процитировали во введении (с. 24). Кристева не дает никакого объяснения тому, какое значение аксиома выбора может иметь для лингвистики (мы думаем, что никакого). Аксиома выбора гласит, что, если мы имеем собрание множеств, из которых каждое содержит по крайней мере один элемент, тогда существует множество, которое содержит в точности один элемент, выбранный в каждом из отправных множеств. Эта аксиома позволяет утверждать существование определенных множеств без их явного задания (ведь не указывается, как произведен «выбор»). Введение этой аксиомы в математическую теорию множеств мотивировано изучением бесконечных множеств или бесконечным собранием множеств. А где мы найдем такие множества в поэзии? Говорить, что аксиома выбора «уточняет, почему любая последовательность содержит послание книги» — это абсурд, и мы не знаем, что больше извращено в этом высказывании — математика или литература. Тем не менее, Кристева продолжает:
Совместимость аксиомы выбора и обобщенной гипотезы континуума с теорией множеств возводит нас на уровень рассуждения по поводу теории, то есть на уровень метатеории (именно таков статус семиотического рассуждения), метатеоремы которой были определены Геделем. (Кристева 1969, с. 189, курсив в оригинале)
Здесь Кристева снова пытается произвести на читателя впечатление учеными словами. Она в самом деле цитирует весьма важные (мета)теоремы математической логики, но она не объясняет читателю ни их содержание, ни их значение для лингвистики. Заметим, что естественный язык обладает конечным алфавитом; фраза или даже книга — это конечная последовательность букв. Следовательно, даже множество всех конечных последовательностей букв во всех возможных книгах, независимо от их объема, является бесконечным счетным множеством. В таком случае совершенно непонятно, как гипотеза континуума, относящаяся к бесконечным несчетным множествам, может применяться в лингвистике.
Все это не мешает автору продолжать:
Там мы как раз обнаруживаем теоремы существования, которые, хотя мы и не собираемся их полностью излагать, интересуют нас в той мере, в какой они дают понятия , позволяющие иным образом, который без них был бы невозможным, задать интересующий нас объект, то есть поэтический язык. Обобщенная теорема постулирует, как известно, что «если φ (X 1… X n) — это простая пропозициональная функция, которая не содержит никаких свободных переменных кроме X 1… X n, причем не обязательно, чтобы она содержала их все, существует класс А такой, что каковы бы ни были множества X 1… X n,? X 1… X n? ∈ А = φ (X 1… X n).» 34
В поэтическом языке эта теорема обозначает различные последовательности в качестве эквивалентных функции, которая всех их объединяет. Отсюда вытекает два следствия: 1) эта теорема постулирует непричинную связанность поэтического языка и расширение буквы в книге;
2) она подчеркивает важность литературы, которая разрабатывает свое послание при помощи самых малых последовательностей: значение (j) содержится в способе связывания слов и фраз […]
Лотреамон стал одним из первых, кто сознательно практиковал эту теорему 35 .
Подразумеваемое аксиомой выбора понятие конструируемости вкупе со всем тем, что мы постулировали относительно поэтического языка, объясняет невозможность установления противоречия в его пространстве. Эта констатация близка к констатации Геделя, касающейся невозможности установления противоречивости системы при помощи средств, формализуемых в самой этой системе. (Кристева 1969, с. 189–190, курсив в оригинале)
В этом отрывке Кристева показывает, что она не понимает математические понятия, упоминаемые ею. Во-первых, аксиома выбора не подразумевает никакого понятия «конструируемости»: наоборот, она позволяет утверждать существование некоторых множеств, не обладая никаким правилом их «конструирования» (см. выше). Во-вторых, Гедель показал в точности противоположное тому, что утверждает Кристева, а именно, невозможность установления непротиворечивости 36 . Кристева также пыталась применять теорию множеств к политической философии. Следующий отрывок взят из ее книги «Революция поэтического языка» (1974):
Здесь намечается одно из открытий Маркса, на которое не обращали достаточного внимания. Если всякий индивид или всякий организм представляет некоторое множество, множество всех множеств, каким должно было бы быть Государство, не существует. Государство как множество всех множеств — это фикция, оно не существует так же, как не существует множеcтва всех множеств в теории множеств 37 . [В сноске Кристева добавляет: ] См. по этому вопросу Бурбаки 38 , а по поводу связи между теорией множеств и функционированием бессознательного — Д. Сибони «Бесконечность и кастрация» в «Силисет», № 4,1973, с. 75–113. [Затем она возвращается к своему рассуждению: ] Государство, строго говоря, является лишь собранием всех конечных множеств. Но для того, чтобы оно существовало и чтобы также существовали все конечные множества, необходимо существование бесконечности: две эти формы существования эквивалентны. Желание создать множество всех множеств выводит на сцену бесконечность и наоборот. Маркс, который заметил иллюзорность представления о Государстве как множестве всех множеств, увидел в том социальном единстве, которое было представлено буржуазной Республикой, собрание, которое, тем не менее, само образует определенное множество (так же, как и собрание конечных ординалов оказывается при своем полагании определенным множеством), которому чего-то не хватает: в самом деле, его существование или, если угодно, его власть зависит от существования бесконечности, которую не может включать в себя ни одно из других множеств. (Кристева 1974, с. 379–380, курсив в оригинале)
Читать дальшеИнтервал:
Закладка: