Валерий Савченко - Начала современного естествознания: концепции и принципы
- Название:Начала современного естествознания: концепции и принципы
- Автор:
- Жанр:
- Издательство:«Феникс»
- Год:2006
- Город:Ростов-на-Дону
- ISBN:5-222-09157-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Валерий Савченко - Начала современного естествознания: концепции и принципы краткое содержание
В данном пособии самым подробным образом рассмотрены основные естественноисторические этапы становления и развития науки, вопросы философии науки и естествознания, фундаментальные концепции, принципы и положения классического механистического и термодинамического, неклассического полевого и квантово-полевого и постнеклассического эволюционно-синергетического и диссипативно-структурного естествознания. Рассмотрены вопросы связи математики и отражаемой ей естественнонаучной реальности мира. В конце каждой главы и некоторых наиболее сложных параграфов даны резюме, предложены вопросы для обсуждения. Дано около 400 тем рефератов и свыше 400 тестовых вопросов для контроля усвоения и аттестации теоретического материала пособия.
Предназначено для студентов очной и заочной форм обучения гуманитарных и социально-экономических специальностей вузов, а также для обучающихся по дистанционным технологиям. Пособие может быть полезно преподавателям данной учебной дисциплины и широкому кругу лиц других специальностей и профессий, в том числе, студентам естественнонаучных и инженерно-технических специальностей, всем, интересующимся вопросами истории, становления и развития классического, неклассического и постнеклассическтого естествознания, а также проблемами естествознания новейшего времени и его ролью в развитии науки и культуры.
Начала современного естествознания: концепции и принципы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Поскольку сегодня известны многочисленные специфические исследования эволюции конкретных сущностей, то мы располагаем некоторыми базовыми представлениями об эволюции как о фундаментальном и универсальном процессе. Их наличие создает условия для ведения интересующего нас междисциплинарного дискурса.
Таких фундаментальных свойств (универсалий) можно выделить несколько, некоторые из них уже были упомянуты, о других скажем сейчас.
Исторически первой универсалией является знаменитая «геккель-дарвинская триада»: изменчивость — стохастичность (непредсказуемая случайность) и неопределенность, органически присущие природе; наследственность — зависимость настоящего и будущего от прошлого; отбор — система правил или законов, отбирающая из множества виртуальных состояний реальные состояния.
Среди новых универсалий прежде всего следует указать, что природные, как правило, большие системы, по изначальной своей сущности обладают в своем развитии принципиальной пространственно-временной необратимостью или, если угодно, «пространственно-временной стрелой», но не просто «стрелой времени» Эддингтона. Тогда второе из выделяемых нами фундаментальных свойств всех открытых больших систем — их пространственно-временная необратимость. Данное заключение основывается на общепризнанной сущности эйнштейновой относительности: все природные явления совершаются в едином 4-мерном пространстве-времени или в мире Минковского. В отношении гуманитарных систем следует говорить об их свойстве историчности, что представляет собой своеобразный гуманитарный аналог пространственно-временной необратимости природных систем. Таким образом, принципиальное следствие обоих аналогов этого свойства состоит в том, что как природные, так и гуманитарные открытые системы обладают прошлым, и, находясь в настоящем в каждый текущий момент времени, затем будут обладать будущим. Данная пространственно-временная (историческая) последовательность событий в силу природной абсолютности необратима, т. е. не может быть изменена какими-либо научными ухищрениями, как писал об этом М. К. Мамардашвили.
Предположение о следующем свойстве систем делается на основе надежно установленных в синергетике, как, впрочем, и в стохастической динамике, фактов, а именно, основывается на том, что динамика развития систем зависит от их состояния. Более того, будущие состояния систем находятся вне возможностей контроля и предсказания, они открыты и неоднозначны. Все это в полной мере характеризует системы как нелинейные, так что третье фундаментальное свойство систем — нелинейность, которое, кстати, обладает тоже пространственно-временными атрибутами. В физике это подтверждают нелинейные теория электромагнитного поля Максвелла, теория тяготения Эйнштейна, теория сверхпроводимости, спинорная теория элементарных частиц Гейзенберга-Иваненко, явление Бенара; в химии — автокаталитическая реакция Белоусова-Жаботинского и многое другое в биологии, медицине, экологии.
Еще одно фундаментальное свойство систем порождается тем, что называется синергией. Синергия в прямом значении этого греческого слова понимается как кооперативное, совместное действие. Но более полно и точно синергия в современном осмыслении обозначает целостное, неразделимое, функциональное единение когерентных (родственных) по сущности составляющих систему элементов. Таким образом, четвертое фундаментальное свойство эволюционирующих самоорганизующихся систем — когерентность.
Следующее, пятое, свойство систем — свойство диссипативности или открытости, обуславливает самопроизвольное (спонтанное) образование некоторых упорядоченных пространственных или временных структур в ходе неравновесного обменного процесса веществом и энергией с окружающей внешней средой. Шредингер, исследуя проблему возникновения жизни, красочно охарактеризовал эту ситуацию как «добывание упорядоченности из окружающей среды». Это свойство диссипативности, неразрывно связанное с неравновесностью состояния, следует распространить и на открытые гуманитарные системы, упорядоченность в которых может возрастать как в результате взаимодействия когерентных элементов внутри самой системы, так и в результате взаимодействия с другими гуманитарными системами.
Самоорганизация в системе связана с формированием структуры более сложной, чем первоначальная. Такой переход ведет к понижению симметрии. «Порядок есть нарушение симметрии» — вот образное выражение этой ситуации. Действительно, пустое пространство, например, в высшей степени симметрично — все его точки и направления эквивалентны (пространство однородно и изотропно). Порождение структуры, например, в виде гексагональных «медовых» ячеек Бенара, понижает симметрию и изменяет состояние системы. Более того, возникновение новых симметрий состояний системы или диссипативных структур (название, как уже упоминалось, дано Пригожиным) носит пороговый характер и связывается с неустойчивостью к флуктуациям. Уместно при этом воспользоваться понятием спонтанного нарушения симметрии в системе, впервые введенного в физике элементарных частиц. С математической точки зрения, неустойчивость и пороговый характер самоорганизации связаны с нелинейностью. Потеря системой устойчивости, ведущей к новой симметрии и, следовательно, к новой структуре самоорганизации, называется катастрофой. Более точно, катастрофа — это скачкообразное изменение, возникающее в виде внезапного ответа системы на плавное изменение внешних условий. В математике этот круг вопросов изучается теорией катастроф Тома-Арнольда. Таким образом, предрасположенность системы к спонтанному нарушению симметрии можно объяснить новым, шестым, свойством систем — катастрофичностью.
При отмеченных выше нарушениях симметрии в системе остаются неявные следы этого нарушения, своеобразная «память* о прошлом, распространяющаяся в виде волн. Наиболее тривиальный пример — упругие волны в твердом теле, которые можно трактовать как «память» о нарушении трансляционной инвариантности (симметрии) последнего. Так, если в кристалле его первый атом занял какое-то место, то остальные атомы должны располагаться эквидистантно (на одинаковых друг от друга расстояниях) в узлах решетки. Если внешняя по отношению к кристаллу сила нарушает установившийся порядок, по кристаллу начинают распространяться упругие волны. В итоге после распространения волны (возмущения) в системе возникает новая структура. Так мы приходим к понятию информации в материальной системе. Действительно, поскольку существование материи мыслится только в пространстве и времени, самосущность материи в пространстве есть ее структура, а самосущность ее во времени есть движение материи (и это основной предмет исследования в физике и химии), то изменяющаяся структура, или структура в движении, и есть информация. Здесь очевидно, что функцию носителя информации взяла на себя структура, без которой информация бессмысленна, ибо она не существует вне материи (как и материя вне информации). Это свойство, уже седьмое, рассматриваемых систем можно назвать свойством организующей информационности (или, может быть, свойством организованной информации).
Читать дальшеИнтервал:
Закладка: