Валерий Савченко - Начала современного естествознания: концепции и принципы
- Название:Начала современного естествознания: концепции и принципы
- Автор:
- Жанр:
- Издательство:«Феникс»
- Год:2006
- Город:Ростов-на-Дону
- ISBN:5-222-09157-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Валерий Савченко - Начала современного естествознания: концепции и принципы краткое содержание
В данном пособии самым подробным образом рассмотрены основные естественноисторические этапы становления и развития науки, вопросы философии науки и естествознания, фундаментальные концепции, принципы и положения классического механистического и термодинамического, неклассического полевого и квантово-полевого и постнеклассического эволюционно-синергетического и диссипативно-структурного естествознания. Рассмотрены вопросы связи математики и отражаемой ей естественнонаучной реальности мира. В конце каждой главы и некоторых наиболее сложных параграфов даны резюме, предложены вопросы для обсуждения. Дано около 400 тем рефератов и свыше 400 тестовых вопросов для контроля усвоения и аттестации теоретического материала пособия.
Предназначено для студентов очной и заочной форм обучения гуманитарных и социально-экономических специальностей вузов, а также для обучающихся по дистанционным технологиям. Пособие может быть полезно преподавателям данной учебной дисциплины и широкому кругу лиц других специальностей и профессий, в том числе, студентам естественнонаучных и инженерно-технических специальностей, всем, интересующимся вопросами истории, становления и развития классического, неклассического и постнеклассическтого естествознания, а также проблемами естествознания новейшего времени и его ролью в развитии науки и культуры.
Начала современного естествознания: концепции и принципы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Итак, по современным воззрениям, Вселенная возникла в результате стремительного расширения, если угодно, взрыва, сверхплотного горячего вещества, обладавшего сверхвысокой температурой. Это был не обычный взрыв, который начинается из определенного центра и затем захватывает другие области пространства. По образному выражению нобелевского лауреата, американского физика Стивена Вайнберга (соавтора теории электрослабого взаимодействия), взрыв произошел одновременно везде, «причем каждая частица материи устремилась прочь от любой другой частицы». Другого пространства, кроме того, которое было первоначально занято исходным веществом, не существовало, т. е. тогда это была вся, именно вся Вселенная. И начальный Большой взрыв (Big Bang) был не расширением материи в окружающее пространство, а расширением самого пространства. Big Bang произошел 13–17 млрд лет назад (по оценкам из закона Хаббла).
Проследим за динамикой развития Вселенной после взрыва. Чем дальше мы уходим в прошлое, тем больше температура, все ближе и ближе сингулярность — загадка взрыва Вселенной. Современная наука позволяет в мысленном путешествии во времени подойти к сингулярности вплотную. Вернемся опять к использованию простейших математических формул, которые позволят с большей наглядностью проиллюстрировать это путешествие. Связь температуры Т и времени t, прошедшего от начала расширения такова: , где Т задается в градусах Кельвина, t — в секундах. Начальная температура, по предположению Гамова, была порядка 10 32градусов Кельвина. Это так называемая планковская температура, составленная из планковских единиц длины, времени и массы. Начиная с этого момента (с нуля времени!), Вселенная начала расширяться, температура ее стала понижаться, а объем Вселенной начал расти. Опять же, через планковское время, которое оценивается величиной около 10 -43с, после рождения классического пространства-времени, во Вселенной наступила инфляционная эпоха. Она характеризуется предельно сильным отрицательным давлением (его иногда называют состоянием фальшивого вакуума), при котором меняются законы обычной гравитационной физики. Вещество становится не источником притяжения, а источником отталкивания. Во время этой эпохи объем Вселенной увеличивается на много-много порядков от первоначального объема, вплоть до ста порядков, т. е. практически до размеров почти современной Вселенной, в результате чего вся современная Вселенная оказывается в одной причинно-следственной области, уравнивается кинетическая энергия расширения и ее потенциальная энергия. Из-за действия сил отталкивания Вселенная «разгоняется» и приобретает большую кинетическую энергию, которую в дальнейшем, в последующие эпохи, мы наблюдаем в виде хаббловского расширения по инерции.
Через одну секунду после взрыва температура настолько понизилась, что была уже всего 10 млрд градусов. При такой все еще огромной температуре происходят процессы рождения и аннигиляции (превращения в свет, в фотоны) элементарных частиц. Например, процессы рождения пар электрон-позитрон при столкновении фотонов и обратная реакция, аннигиляция пар электрон-позитрон с превращением в фотоны.
При еще более высокой температуре, следовательно, еще ближе к моменту «взрыва», возможны были рождение и аннигиляция более тяжелых частиц и античастиц, причем непрерывно происходило быстрое их взаимное превращение. В этом первоначальном и «кипящем бульоне» из элементарных частиц, частиц примерно было столько же, сколько фотонов. В настоящее время фотонов в миллиард раз (10 9) раз больше, чем частиц (протонов). Очевидно, объяснить такое соотношение между числом фотонов и числом частиц в прошлом и настоящем можно, если только предположить, что в «кипящем планковском бульоне», в прошлом, на каждый миллиард античастиц приходился миллиард плюс одна частица, т. е. существовала мизерная ассиметрия между частицами и античастицами. (Если бы ассиметрия была в другую сторону, то нынешняя Вселенная состояла бы из антивещества). Возникает множество вопросов: почему разница между количеством частиц и античастиц так мала? и т. д. Оставим в стороне пока эти вопросы и вернемся к ситуации, возникшей через одну секунду (!) после взрыва. В это время от всего разнообразия частиц остались только фотоны, электроны и позитроны, нейтрино и антинейтрино. Нейтрино и антинейтрино вырвались из равновесного состояния, из «кипящего бульона», примерно через 0,2 сек. после взрыва (в отличие от фотонов, оторвавшихся примерно через миллион лет).
Как уже, наверное, обратили внимание наши читатели, анализ «большого взрыва» свелся к обсуждению проблем, связанных с элементарными частицами. За последние годы в физике элементарных частиц произошли большие изменения. Сейчас логически последовательное описание Big Bang невозможно без элементарных частиц. Стало ясно, и это мы показали раньше, что такие, например, элементарные частицы, как протон и нейтрон, не являются «кирпичиками мироздания», а являются сложными системами, состоящими из более элементарных объектов — кварков. Если условно мы подразделяем наш мир на три состояния по своим, в общем-то отличительным друг от друга, законами (микромир, макромир и мегамир), то в момент «большого взрыва» произошло слияние микро — и мегамира. Такое состояние Вселенной в то ушедшее время получило название микрокосмоса.
Все тяжелые частицы, адроны, состоят из кварков. Соединение кварков осуществляется посредством элементарных переносчиков сильного взаимодействия — глюонов. Но самое поразительное заключается в том, что на взаимодействие элементарных частиц, на сложные процессы, проходящие в «кипящем бульоне», оказывает влияние пустота — физический вакуум. Этот особый вакуум (так считает современная наука) является сложным состоянием, необычной пустотой, от которого зависят свойства пространства-времени и материи. Физический вакуум — зто сложнейшее состояние «кипящих» виртуальных частиц всевозможных сортов (см. пред. главу 5).
Следует также вспомнить о видах взаимодействия, известных нам. Таких видов взаимодействий, как уже указывалось, всего четыре: гравитационное, электромагнитное, слабое и сильное. Переносчиком электромагнитного взаимодействия являются фотоны — кванты электромагнитного поля, не имеющие массы покоя и двигающиеся всегда только с одной скоростью — со скоростью света. Слабое взаимодействие проявляется лишь на очень малых расстояниях — порядка 10 -16см (радиус электромагнитного и гравитационного взаимодействия, по существу, бесконечен). Переносчиками слабого взаимодействия являются бозоны, которых имеется три сорта: W +, W -, Z 0. При высокой температуре Т > 10 15К различие между слабым и электромагнитным взаимодействием пропадает, при этой температуре (можно пересчитать, в какой момент времени после взрыва это происходит) существует единое электрослабое взаимодействие. За разработку единой теории электромагнитного и слабого взаимодействий, т. е. электрослабого взаимодействия, С. Вайнберг, Ш. Глэшоу и А. Салам были в 1979 году удостоены Нобелевской премии.
Читать дальшеИнтервал:
Закладка: