Валерий Савченко - Начала современного естествознания: концепции и принципы
- Название:Начала современного естествознания: концепции и принципы
- Автор:
- Жанр:
- Издательство:«Феникс»
- Год:2006
- Город:Ростов-на-Дону
- ISBN:5-222-09157-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Валерий Савченко - Начала современного естествознания: концепции и принципы краткое содержание
В данном пособии самым подробным образом рассмотрены основные естественноисторические этапы становления и развития науки, вопросы философии науки и естествознания, фундаментальные концепции, принципы и положения классического механистического и термодинамического, неклассического полевого и квантово-полевого и постнеклассического эволюционно-синергетического и диссипативно-структурного естествознания. Рассмотрены вопросы связи математики и отражаемой ей естественнонаучной реальности мира. В конце каждой главы и некоторых наиболее сложных параграфов даны резюме, предложены вопросы для обсуждения. Дано около 400 тем рефератов и свыше 400 тестовых вопросов для контроля усвоения и аттестации теоретического материала пособия.
Предназначено для студентов очной и заочной форм обучения гуманитарных и социально-экономических специальностей вузов, а также для обучающихся по дистанционным технологиям. Пособие может быть полезно преподавателям данной учебной дисциплины и широкому кругу лиц других специальностей и профессий, в том числе, студентам естественнонаучных и инженерно-технических специальностей, всем, интересующимся вопросами истории, становления и развития классического, неклассического и постнеклассическтого естествознания, а также проблемами естествознания новейшего времени и его ролью в развитии науки и культуры.
Начала современного естествознания: концепции и принципы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Рассмотрим с позиций теории катастроф ситуацию, связанную с механизмом потери устойчивости какой-либо структурой. Нам известно, исследуемый нами мир структурирован, значит, все его структурные элементы обладают устойчивостью, и в то же время он меняется, эволюционирует. Отсюда следует, что время от времени имеет место и качественная, существенная перестройка структуры или состояния системы. В этом случае принято говорить о потере устойчивости. При потере устойчивости определенные флуктуации перестают компенсироваться и катастрофически растут до тех пор, пока качественное, существенное изменение системы не положит этому росту конец. Переход системы в новое состояние происходит скачком, который подготавливается изменениями параметров, обычно называемых управляющими. Момент скачка определяется некоторым критическим значением параметра, приближение к которому может быть медленным и плавным. Последнеее ничтожное, в пределе бесконечно малое, изменение какого-то параметра приводит к полной, кардинальной перестройке. Так возникают снежные лавины, камнепады, сели и другие природные явления.
При нагреве герметически закрытого сосуда, до половины наполненного водой, прежде разделенные в нем две фазы — вода и пар — резкой границей, по достижении некоторой критической температуры границу эту мгновенно утрачивают — система перейдет в качественно новое — надкритическое состояние, в котором нет ни пара ни воды как таковых. Точно так же мгновенно по достижении критической величины потока тепла возникает четко структурированная конвекция (бинаровская). При критическом крене судно мгновенно переворачивается вверх дном. По достижении критической массы урана происходит ядерный взрыв. При изменении внешних условий дальше какого-то предела живое существо умирает.
Такие скачкообразные перестройки принято называть «катастрофами», и математическая теория, созданная для их описания, имеет это же название — теория катастроф. Подчеркнем сразу, во избежание путаницы, что эти «катастрофы» не имеют ничего общего с катастрофами, считавшимися причиной изменений (эволюции) в природной среде до появления труда Ч. Лайеля. Те катастрофы были катастрофами и в обычном смысле, вызванными внешними, никак не связанными с внутренними характеристиками рассматриваемой системы, обстоятельствами. «Катастрофы», о которых речь пойдет ниже, описывают не причины изменений в природных системах, а механизм этих изменений и являются следствием их внутренних характеристик.
Механизм и условия появления таких скачков, качественные результаты теории покажем, рассмотрев классический пример — прощелкивание изогнутой пластины (полоски, «линейки»).
Упругая пластина, выгнутая вверх, имеет вид арки. Если ее нагружать посередине, это будет первый ее управляющий параметр, она начнет деформироваться, но будет оставаться аркой, выгнутой вверх, хотя и немного кривой, до тех пор пока нагрузка не достигнет критической величины, при которой пластина «прощелкнет» и займет свое второе устойчивое положение — прогибом вниз. Вторым управляющим параметром в такой конструкции может быть боковое сжатие, обеспечивающее исходную выгнутость вверх: чем больше оно, тем больше критическая нагрузка и сильнее прощелкивание.
Если такую пластинку поставить вертикально и подвергать ее вертикальному сжатию и боковой нагрузке в центре, справа или слева, мы получим систему с двумя полностью симметричными устойчивыми состояниями — выгнутость вправо и выгнутость влево. Действие боковой нагрузки симметрию нарушает, но если нагрузка только вертикальная, оба состояния совершенно равноправны. Между ними находится состояние строгой вертикальности, неустойчивое при наличии сжимающей вертикальной нагрузки, оно разрушается при любой сколь угодно малой флуктуации.
Здесь хорошо видна важная особенность поведения динамических систем в момент неустойчивости — неоднозначность дальнейшего поведения. При возникновении только вертикальной сжимающей силы линейка может выгнуться в любую сторону, причем вариант, выбранный ею, зависит от случайных сколь угодно малых флуктуаций внешних условий или внутренних параметров. После того, как путь дальнейшей эволюции выбран (изгибание началось в определеную сторону), система уже не может свернуть с него, но сам выбор пути — случаен! Точка неустойчивости в этом случае называется точкой бифуркации, точкой ветвления или раздвоения. В поведение системы в точке бифуркации вносится принципиальный элемент случайности.
Это очень важный, фундаментальный для всего естествознания момент. Оказывается, мы имеем дело с принципиальной неопределенностью не только в микромире, в мире квантов, но и в мире макроскопических, непосредственно наблюдаемых нами явлений.
Рассмотрим еще раз вертикальную упругую пластинку (линейку), изображенную на рис. 1. Ее состояние описывается количественно величиной стрелы прогиба X. Изменение этой величины определяют два управляющих параметра: сила F y, действующая вдоль нее (вдоль оси у), которую будем считать положительной, когда она растягивающая, и отрицательной, когда она сжимающая, и сила F x, действующая на ее середину в перпендикулярном направлении (вдоль оси х).
Рис. 1. Простейшая система с «катастрофой» — упругая линейка под действием продольной и поперечной сил. Нижний конец линейки закреплен шарнирно в начале координат, верхний не закреплен, но может двигаться только вдоль вертикальной оси. а) если F y=0, стрела прогиба X прямо и однозначно зависит от величины силы F x; б) если Fy < 0, одному и тому же значению F xсоответствуют два устойчивых положения линейки — с прогибами X 1и X 2переход между которыми возможен только скачком.
Сила F xположительна, если направление ее действия совпадает с направлением оси х. Если сила F xотсутствует, а сила F положительна — линейка прямая и при этом система находится в устойчивом состоянии (если появится сила F x, отличная от нуля линейка прогнется, как показано на рис. 1а, но если эта сила исчезнет — исходное состояние восстановится); если сила F отрицательна, состояние «линейка прямая» становится неустойчивым: любое случайное сколь угодно малое воздействие скачком переведет ее в одно из возможных симметричных состояний — «линейка выгнута вправо» или «линейка выгнута влево».
Какое из этих состояний реализуется при отсутствии боковой силы, предсказать невозможно: при переходе силы F от положительных значений к отрицательным, система проходит точку бифуркации. Параметр, воздействующий на систему подобным образом, называется расщепляющим, так как его изменение приводит в точке бифуркации к расщеплению единой кривой, описывающей поведение системы, на две равнозначных. Выбор между этими двумя линиями поведения может определяться случаем.
Читать дальшеИнтервал:
Закладка: