Вячеслав Кириллов - Логика: учебник для юридических вузов
- Название:Логика: учебник для юридических вузов
- Автор:
- Жанр:
- Издательство:Проспект
- Год:2008
- Город:Москва
- ISBN:978-5-482-01672-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вячеслав Кириллов - Логика: учебник для юридических вузов краткое содержание
В учебнике, подготовленном в соответствии с государственным образовательным стандартом для юридических вузов, учтены особенности преподавания курса логики студентам высших юридических учебных заведений. Использованы материалы из области правовых наук, показано значение логических законов, приемов и операций в работе юриста. Даны литература, предметный указатель и перечень логических символов.
Данное издание является шестым, переработанным и дополненным.
Учебник может быть использован не только студентами-юристами, но также студентами других гуманитарных специальностей.
Логика: учебник для юридических вузов - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В практике научных и обычных рассуждений часто встречается модифицированный вывод по методу остатков, когда по известному действию заключают о существовании новой по отношению к уже известной причины. Например, Мария Склодовская-Кюри, установив, что некоторые урановые руды испускают радиоактивные лучи, превышающие по интенсивности излучение урана, пришла к выводу, что в этих соединениях имеются какие-то новые вещества. Так были открыты новые радиоактивные элементы: полоний и радий.
Схема модифицированного рассуждения по методу остатков:
1) АВСвызывает abcd.
2) Авызывает а.
3) Ввызывает b.
4) Свызывает с.
_______________
Вероятно, существует некий X, который вызывает d.
Подобно другим индуктивным выводам метод остатков дает, как правило, проблематичное знание. Степень вероятности заключения в таком выводе определяется, во-первых, точностью знаний о предшествующих обстоятельствах, среди которых идет поиск причины исследуемого явления, во-вторых, точностью знания о степени влияния каждой из известных причин на совокупный результат. Приблизительный и неточный перечень предшествующих обстоятельств, как и неточное представление о влиянии каждой из известных причин на совокупное действие, может привести к тому, что в заключении вывода в качестве неизвестной причины будет представлено не необходимое, а лишь сопутствующее обстоятельство.
Рассуждения по методу остатков нередко используются в процессе расследования преступлений, главным образом в тех случаях, когда устанавливают явную несоразмерность причин исследуемым действиям. Если действие по своему объему, масштабу или интенсивности не соответствует известной причине, то ставится вопрос о существовании каких-то других обстоятельств.
Например, по уголовному делу о хищении товаров со склада обвиняемый признал факт хищения и показал, что он в одиночку вынес со склада похищенную вещь. Проведенной проверкой было установлено, что вынести такую тяжелую вещь не под силу одному человеку. Следователь пришел к выводу об участии в хищении других лиц, в связи с чем менялась и квалификация деяния.
Рассмотренные методы установления причинных связей по своей логической структуре относятся к сложным рассуждениям, в которых собственно индуктивные обобщения строятся с применением дедуктивных выводов. Опираясь на свойства причинной связи, дедукция выступает логическим средством элиминации(исключения) случайных обстоятельств, тем самым она логически корректирует и направляет индуктивное обобщение.
Взаимосвязь индукции и дедукции обеспечивает логическую состоятельность рассуждений при применении методов, а точность выраженного в посылках знания определяет степень обоснованности получаемых заключений.
Вопросы для самопроверки1. Какие методы установления причинной связи изучает логика? На каких принципах причинно-следственных связей они основаны?
2. Что представляют собой метод единственного сходства и метод единственного различия? Приведите их схемы, укажите условия, повышающие вероятности вывода.
3. Приведите схему объединенного метода сходства и различия. В чем его преимущество по сравнению с этими методами, применяемыми отдельно?
4. В чем особенности метода сопутствующих изменений? На каком свойстве причинно-следственной связи он основан? Приведите его схему.
5. Что такое метод остатков? В каких случаях он применяется? Приведите схему.
§ 5. СТАТИСТИЧЕСКИЕ ОБОБЩЕНИЯ
Особым видом умозаключений неполной индукции являются статистические обобщения, связанные с анализом массовых событий. К ним относятся, например, массовые транспортные перевозки пассажиров и грузов, рождаемость и смертность людей, распространение заболеваний, транспортные происшествия, динамика преступлений и многие другие.
Учитывая трудности выявления причинных зависимостей, анализ таких массовых событий позволяет установить устойчивое распределение интересующих исследователя случайных признаков. Количественная информация, выражающая устойчивые тенденции развития, имеет важное практическое значение для правильной организации обслуживания населения, профилактических мероприятий, борьбы с преступностью и т. п. Анализ массовых событий ведется чаще всего путем не сплошного, а выборочногоисследования отдельных групп или образцов и логического переноса полученных результатов на все их множество. Вывод в этом случае протекает в форме статистического обобщения.
Статистическое обобщение — это умозаключение неполной индукции, в котором установленная в посылках количественная информация о частоте определенного признака в исследуемой группе (образце) переносится в заключении на все множество явлений этого рода.
В отличие от индукции через перечисление при отсутствии противоречащего случая в посылках статистического умозаключения фиксируется следующая информация: (1) общее число составляющих исследуемую группу, или образец случаев; (2) число случаев в которых присутствует интересующий исследователя признак; (3) частота проявления интересующего признака.
Для построения схемы статистического обобщения введем условные обозначения: S— исследуемый образец; р— интересующий исследователя признак; m— общее число наблюдаемых случаев (элементов образца); n— число благоприятных случаев, когда явление обладает признаком р; f(р)— частота признака р; К— популяция, или множество явлений, на которое распространяется частота признака.
Частота появления признака рв образце Sпредставляет собой отношение числа благоприятных случаев nк общему числу исследованных явлений m:
f(p) = n/m.
Например, статистическая информация о совершении такого рода преступлений, как хулиганство, показывает, что 95 из 100 случаев хулиганских действий совершаются в состоянии алкогольного опьянения. Значит, частота хулиганства, связанная с алкогольным опьянением, определяется как 95/100, т. е. равна 95%.
Частота появления признака в статистических описаниях принимает числовое значение в интервале между 0и 1: 0 < f(p) < 1. Это объясняется тем, что в статистическом образце Sчисло случаев появления признака ( n) всегда меньше общего числа наблюдаемых элементов ( m). Поскольку m > n, тем самым f(p)всегда будет меньше единицы, но больше нуля.
Читать дальшеИнтервал:
Закладка: