Георг Гегель - НАУКА ЛОГИКИ. том 1

Тут можно читать онлайн Георг Гегель - НАУКА ЛОГИКИ. том 1 - бесплатно ознакомительный отрывок. Жанр: Философия. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    НАУКА ЛОГИКИ. том 1
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Георг Гегель - НАУКА ЛОГИКИ. том 1 краткое содержание

НАУКА ЛОГИКИ. том 1 - описание и краткое содержание, автор Георг Гегель, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

НАУКА ЛОГИКИ. том 1 - читать онлайн бесплатно ознакомительный отрывок

НАУКА ЛОГИКИ. том 1 - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Георг Гегель
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

С отбрасыванием констант находится в связи одно замечание, которое можно сделать относительно названий диференцирования и интегрирования, замечание, сходное с тем, которое мы сделали раньше относительно наименований «конечное» и «бесконечное выражение» (50), а именно, что в их определении содержится скорее противоположное тому, что выражается этими названиями. Диференцирование означает полагание разностей; но диференцирование, наоборот, уменьшает число измерений уравнения и в результате отбрасывания константы устраняется один из моментов определенности; как мы уже заметили, корни переменной величины приравниваются, их разность , следовательно , устраняется . Напротив, при интегрировании следует снова присоединить константу; уравнение благодаря этому несомненно интегрируется, но в том смысле, что ранее устраненная разность корней восстанавливается , положенное равным снова диференцируется. – Обычный способ выражения способствует тому, чтобы оставить в тени существенную природу предмета и все сводить к подчиненной и даже чуждой главной стороне дела точке зрения отчасти бесконечно-малой разности, приращения и т. п., отчасти же голой разности вообще между данной и производной функцией, не обозначая их специфического, т. е. качественного различия.

Другую главную область, к которой прилагается диференциальное исчисление, представляет механика ; попутно мы отчасти уже касались смысла различных степенных функций, получающихся при элементарных уравнениях ее предмета, движения ; здесь я буду говорить о них непосредственно. Уравнение, а именно математическое выражение просто равномерного движения c = s/ t или s = ct , в котором пройденные пространства пропорциональны протекшим временам по некоторой эмпирической единице c , величине скорости, не имеет смысла диференцировать; коэфициент с уже совершенно определен и известен, и здесь не может иметь места никакое дальнейшее развертывание степени, никакое дальнейшее разложение в ряд. – Как анализируется s = at2 , уравнение движения падения тел, об этом мы уже вкратце сказали выше; первый член анализа ds/ dt = 2 at выражается словесно и, следовательно, понимается, как существующий реально таким образом, что он есть член некоторой суммы (каковое представление мы уже давно устранили), одна часть движения и притом та часть его, которая приписывается силе инерции, т. е., просто-равномерной скорости таким образом, что в бесконечно-малых частях времени движение принимается за равномерное , а в конечных частях времени, т. е. в существующих на самом деле, – за неравномерное. Разумеется, fs = 2 at и значение a и t , взятых сами по себе, известно, равно как известно и то, что этим самым дано определение скорости равномерного движения: так как a = s/ t2 , то вообще 2 at = 2 s/ t ; но этим мы нисколько не подвинулись вперед в нашем знании; лишь ложное предположение, будто 2 at есть часть движения как некоторой суммы , дает ложную видимость физического предложения. Самый множитель, a , эмпирическая единица – некоторое определенное количество, как таковое – приписывается тяготению; если здесь применяют категорию силы тяготения, то нужно сказать, что, наоборот, как раз целое s = at2 есть действие или, лучше сказать, закон тяготения. – То же самое верно и относительно выведенного из ds/ dt = 2 at положения, гласящего, что если бы прекратилось действие силы тяжести, то тело со скоростью, приобретенной им в конце своего падения, прошло бы во время, равное времени его падения, пространство вдвое большее пройденного. – В этом положении заключается также и сама по себе превратная метафизика: конец падения или конец той части времени, в которое падало тело, всегда сам еще есть некоторая часть времени; если бы он не был таковой частью, то наступил бы покой и, следовательно, не было бы никакой скорости; скорость может быть установлена лишь по пространству, пройденному в некоторую часть времени, а не в конце ее. Если же кроме того и в других физических областях, где вовсе нет никакого движения, как например относительно поведения света (помимо того, что называют его распространением в пространстве) и относительно определений величин в цветах, применяют диференциальное исчисление и первая производная функция некоторой квадратной функции здесь также именуется скоростью, то на это следует смотреть, как на еще более несостоятельный формализм выдумывания существования. –

Движение, изображаемое уравнением s = at2 , говорит Лагранж, мы находим в опыте падения тел; простейшим следующим за ним было бы движение, уравнением которого является s = c t3 , но такого движения не оказывается в природе; мы не знали бы, ч,тб может означать собою коэфициент c . Если это верно, то, напротив, существует движевие, уравнением которого является s3 = at2 – кеплеровский закон движения тел солнечной системы. И разрешение вопроса о том, что здесь должна означать первая производная функция 2 at/(3 s2) и т. д., а также дальнейшая непосредственная разработка этого уравнения путем диференцирования, развитие законов и определений указанного абсолютного движения, отправляясь от этой исходной точки зрения , должно бы, конечно, представить собою интересную задачу, в решении которой анализ явил бы себя в достойнейшем блеске.

Таким образом само по себе взятое приложение диференциального исчисления к элементарным уравнениям движения не представляет реального интереса; формальный же интерес проистекает из общего механизма исчисления. Но иное значение получает разложение движения в отношении определения его траектории; если последняя есть кривая и ее уравнение содержит высшие степени, то требуются переходы от прямолинейных функций возвышения в степень к самим степеням, а так как первые должны быть выведены из первоначального уравнения движения, содержащего фактор времени, с элиминированием времени, то этот фактор вместе с тем должен быть низведен к тем низшим функциям развертывания, из которых могут быть получены означенные уравнения линейных определений. Эта сторона приводит к рассмотрению интереса другой части диференциального исчисления.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Георг Гегель читать все книги автора по порядку

Георг Гегель - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




НАУКА ЛОГИКИ. том 1 отзывы


Отзывы читателей о книге НАУКА ЛОГИКИ. том 1, автор: Георг Гегель. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x