Enrique Rodriguez - Камень, ножницы, теорема. Фон Нейман. Теория игр.
- Название:Камень, ножницы, теорема. Фон Нейман. Теория игр.
- Автор:
- Жанр:
- Издательство:Де Агостини
- Год:2015
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Enrique Rodriguez - Камень, ножницы, теорема. Фон Нейман. Теория игр. краткое содержание
Камень, ножницы, теорема. Фон Нейман. Теория игр. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Например, представим себе группу из трех друзей — А, В и С, — которым надо поделить между собой 100 евро. Решать, как будет происходить дележ, они будут простым голосованием, то есть большинством голосов. Возможными коалициями будут AB, АС УВСу а также четвертая — АВС. С такими исходными данными можно установить бесконечное количество платежей:
А = 33; В = 33; С = 34
А = 70; В = 30; С = 0
А = 25; В= 70; С = 5
и так далее.
Таким образом, ни одна коалиция не будет стабильной. Анализ таких игр немного сложнее анализа некооперативных игр. В этом случае надо угадать, каковы шансы на создание стабильных коалиций, в которых распределение платежей будет происходить таким образом, что никто из их членов не будет заинтересован в выходе из коалиции. В обычной жизни такой анализ приводит к появлению некоего судьи, который сделает возможной оптимальную коалицию. Например, реальная ситуация, в которой необходим подобный метод, может возникнуть в Европарламенте, при распределении некоего бюджета между членами союза. Каждая страна имеет определенное количество депутатов с правом голоса.
Возможные коалиции между игроками являются фактором нестабильности, которым очень трудно управлять. В любом случае единственный способ применить здесь результаты для игр с двумя игроками и нулевой суммой — считать коалицию одним игроком. Если в некоем сценарии есть, например, четыре игрока А, В, С и D и создается коалиция между А, В и С, то эта группа игроков рассматривается как один игрок, соперничающий с D то тогда можно применить схему игры с двумя игроками и нулевой суммой.
Теорема о минимаксе и результаты теории игр имеют свои ограничения. Разумеется, они не являются безошибочным способом выиграть в любой игре, даже если речь идет о двух рациональных игроках. Эта теория предлагает прежде всего наилучший способ принятия решения. Рациональный игрок, играющий против нерационального, может создать техники игры, не имеющие ничего общего с теорией игр. Самое главное, что была создана математическая теория, способная моделировать сценарии и абстрагировать конкретные ситуации, чтобы рассмотреть их с точки зрения математической логики. В этом смысле теория игр имеет много общего с аксиоматизацией теории множеств и квантовой механикой — это и вызвало интерес фон Неймана и было основной причиной, по которой он занимался настолько отличными друг от друга областями. Он поднимал до уровня науки дисциплины, которым ранее этот уровень был несвойственен, как это случилось с экономической теорией.
На первом этапе своего становления любая наука развивает методы наблюдения, которые позволяют точно описать предмет исследования. Следующим шагом является формулировка законов, как правило эмпирических, которые описывают поведение этого предмета. С этого момента теория должна быть в состоянии предположить, как будет развиваться система с течением времени. Научное описание такой сложной системы планет, как наша, утратило бы большую часть своего значения, если бы с его помощью нельзя было определить, например, дату, точное время и место солнечного затмения. Однако для того чтобы этот прогноз был научным результатом, а не плодом догадок, необходимо, чтобы теория была математизирована. Это значит, что ее законы должны описываться совокупностью уравнений. И когда говорится, что физика перестала быть натурфилософией и превратилась в науку, подразумевается, что благодаря новым методам исчисления законы ньютоновой механики были записаны в виде формул.
Галилей подробно описал свободное падение тел, но необходимо было дождаться появления исчисления бесконечно малых, что позволило свести законы механики к математическим формулам и узнать с высокой степенью точности, сколько времени требуется камню, чтобы достичь земли, и какова его скорость.
В начале XX века в некоторых естественных науках, таких как химия и биология, были внедрены методы математического исчисления. Но для общественных наук этот процесс оказался (и является таковым до сих пор) гораздо более сложным, так как в них всегда действует человеческий фактор, подразумевающий некоторую непредсказуемость. Тем не менее у экономики изначально было больше шансов, чем у какой-либо другой науки, ведь она, в конце концов, имела дело с числами. С другой стороны, это было одной из причин, по которым многие не соглашались с тем, чтобы такая деликатная материя, как человеческое поведение, рассматривалась отстраненно, с помощью чисел.
Прогнозирование всегда было одним из самых интересных аспектов экономической теории и одновременно самым слабым ее местом. В этом смысле экономика очень похожа на метеорологию, с той только разницей, что инструменты последней гораздо более совершенны. Метеорология может и не предсказать какое-то атмосферное явление, но когда оно произойдет, она будет в состоянии детально описать его причины, что в большинстве случаев неподвластно экономике, для которой многие кризисы являются совершенной неожиданностью.
Такое положение вещей кажется логичным, ведь метеорология ближе к физическим наукам, чем экономика, и, следовательно, ее легче математизировать. Не случайно фон Нейман однажды заявил, что экономика в своем развитии отстала на миллион миль от такой науки, как физика.
Хотя до 1937 года фон Нейман не опубликовал ни одной работы по экономике, его интерес к этой теме зародился довольно давно, еще во время бесед с отцом за семейными завтраками. Почти с самого начала фон Нейман подумал о том, чтобы отставить инструменты и методы математического анализа, несмотря на хорошие результаты, которые они дали в области ньютоновой механики.
Он полагал, что эти методы переоценены и не могут принести существенную пользу экономической теории. Фон Нейман больше полагался на то, что мы сегодня называем дискретной математикой. Используя методы, очень похожие на те, что были применены в теории игр, и обобщив теорему Брауэра о неподвижной точке, в 1937 году фон Нейман опубликовал работу Über ein ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwer’schen Fixpunktsatzes («Об экономической системе уравнений и обобщении теоремы Брауэра о неподвижной точке»), в которой доказывал существование математического параметра, представляющего равновесие цен.
Возможно, главная ценность этой статьи заключалась в том, что теория Неймана основывалась на системе аксиом, созданных им независимо от их экономического значения. Его методология была очень похожа на его же подход к аксиоматизации теории множеств или квантовой механики. Речь шла о том, чтобы начать с нуля и четко определить элементы, которые участвовали бы в рассмотрении.
Читать дальшеИнтервал:
Закладка: