Carlos Casado - Вначале была аксиома. Гильберт. Основания математики

Тут можно читать онлайн Carlos Casado - Вначале была аксиома. Гильберт. Основания математики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_popular, издательство Де Агостини, год 2015. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Вначале была аксиома. Гильберт. Основания математики
  • Автор:
  • Жанр:
  • Издательство:
    Де Агостини
  • Год:
    2015
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Carlos Casado - Вначале была аксиома. Гильберт. Основания математики краткое содержание

Вначале была аксиома. Гильберт. Основания математики - описание и краткое содержание, автор Carlos Casado, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство. Среди коллег этого незаурядного ученого выделяла невероятная харизма, а знаменитые 23 кардинальные проблемы, сформулированные им в 1900 году, предопределили развитие самой дисциплины на десятилетия вперед. Он превратил город Гёттинген в мировую столицу математики, но стал свидетелем того, как его разоряют нацистские зачистки. Знаменитая фраза «Мы должны знать. Мы будем знать», выгравированная на его могиле, передает жажду знаний последнего великого математика-универсала.

Вначале была аксиома. Гильберт. Основания математики - читать онлайн бесплатно полную версию (весь текст целиком)

Вначале была аксиома. Гильберт. Основания математики - читать книгу онлайн бесплатно, автор Carlos Casado
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако для Брауэра это необязательно было так. Поскольку мы не знаем, содержит ли десятичное продолжение числа π 20 нулей подряд, пропозиция «десятичное продолжение числа π содержит 20 нулей подряд» не является (и в этом ключ к интуиционизму) ни истинной, ни ложной. Ее истинность на сегодняшний день не может быть определена. Один единомышленник Брауэра утверждал, что принцип исключенного третьего для такого типа пропозиций может быть справедливым для Бога (Он знает всю бесконечную последовательность знаков после запятой такой, как она есть), но такое невозможно для человеческой логики. Совершив разворот на 180° по отношению к логистической догме, интуиционисты считали такую логику ответвлением математики, а не наоборот.

Этот образ мысли положил начало тому, что с тех пор известно как «интуиционистская логика», формализованная прилежным учеником Брауэра Арендом Гейтингом (1898— 1980). В классической логике двойное отрицание пропозиции равносильно пропозиции, то есть ¬¬А↔А. Но интуиционистская логика отрицает, что из двойного отрицания пропозиции можно вывести исходную пропозицию. Следовательно, ¬¬А→А не принимается. Этот интуиционистский пересмотр классической логики отвечает на вопрос: почему Брауэр отвергал рассуждения доведением до абсурда (к которым нередко прибегал Гильберт)? Доказательством ложности отрицания А не доказывалось, что А истинно, поскольку был оставлен принцип исключенного третьего.

Нидерландский математик считал справедливыми только конструктивные доказательства. Доказать, что отрицание теоремы противоречиво, — неравносильно доказательству, что теорема истинна, поскольку, прежде чем доказать последнее, нужно открыто сконструировать ее содержание. Для математиков-интуиционистов неконструктивные доказательства существования (доведением до абсурда) свидетельствуют о том, что в мире есть скрытое сокровище, но не указывают его местонахождение, поэтому такие доказательства имеют исключительно эвристическую ценность. Для существования математического объекта недостаточно, чтобы он не порождал никакого противоречия; нужно ввести эффективную процедуру его построения.

Парадоксы, открытые в рамках теории множеств, по мнению Брауэра, явно представляли собой опасность для чисто экзистенциальной математики. Не зря Кронекер всегда ожесточенно спорил с Кантором о том, что если не построить множества, о которых тот говорил (а он не мог их построить, поскольку подавляющее большинство их было бесконечным), теоремы теории множеств растворятся в воздухе. Нужно было вернуться на путь греческой математики, которая была конструктивной, а значит интуиционистской, при этом бесконечность присутствовала только в потенции, но никогда не была актуальной. Гаусс уже высказывал подобное мнение: «Я прежде всего протестую против применения бесконечной величины как завершенной, в математике это никак не допустимо.

Понятие бесконечности есть лишь способ выражения понятия предела». Для интуиционистов все трудности оснований математики исходили из использования бесконечности как чего-то законченного и идеального. Это нарушение происходит при попытке определить реальное число, такое, например, как число π = 3, 141592... Это многоточие после первых знаков после запятой создает у нас ложное ощущение, будто перед нами закрытый объект.

В итоге речь зашла о восстановлении классической математики, насколько это возможно, без обращения к принципу исключенного третьего и к доведению до абсурда. В 1918 году Брауэр начал реализацию своего плана, который он назвал «вторым актом интуиционизма» («первый» акт предполагался как интуитивное основание математики), в статье «Основание теории множеств, независимо от принципа исключенного третьего». Держась за интуиционизм Канта, Брауэр основывался на временной перечислимости и признавал возможность только счетных множеств, считая несчетные множества противоречащими интуиции. Как говорил Кронекер, «Бог создал натуральные числа, все остальное создано человеком». С несчетными множествами работать нельзя, чтобы не столкнуться с серьезными парадоксами. В интуиционистской теории множеств сами множества получают имя видов, и единственные позволенные собрания чисел — конечные собрания: {0}, {0, 1}, {0, 1, 2}... Ни в коем случае не разрешено внезапно образовывать ансамбли из всех натуральных чисел {0, 1, 2,...}. Следовательно, алефы Кантора исчезают в тумане.

Бесконечность! Ни один другой вопрос так не вдохновлял человека, ни одна другая идея так не стимулировала его интеллект, ни одно другое понятие не требует большего разъяснения.

Давид Гильберт

Аренд Гейтинг, в свою очередь, вплотную подошел к арифметике. Интуиционистская арифметика включает в себя те же математические законы, что и классическая, но она подчиняется только логическим законам, которые удовлетворяют интуиционистов. В отличие от интуиционистской теории множеств, которая жертвовала значительной частью классической теории множеств, интуиционистская арифметика приготовила сюрприз: тесную связь с классической арифметикой. В 1933 году Курт Гёдель доказал, что для каждой формулы, доказуемой в арифметике Пеано, существует равносильная формула, которая доказуема в арифметике Рейтинга, и наоборот. Интуиционистская арифметика только внешне была слабее классической.

Наконец, в своей работе «Континуум» (1918) Герман Вейль попытался восстановить анализ с интуиционистских позиций. Он отказывался принимать произвольные множества натуральных чисел, учитывая только те бесконечные множества, которые можно было определить, построить. Поэтому ему удалось определить только те действительные числа, которые соответствуют арифметическому закону. То есть он восстановил только счетное количество несчетных чисел, которые составляют континуум. Для классического математика числовая прямая содержит все возможные последовательности Коши или сечения Дедекинда, а не только те, которые определимы, то есть те, которые можно уточнить с помощью построительного правила. И поскольку они представляют собой счетное количество, то оставляют числовую прямую полной отверстий, — это атомизированный континуум. Из чего следует, что интуиционистский анализ чрезвычайно отличается от классического. Математики-интуиционисты не принимают, например, теорему Больцано. И наоборот, классические математики не принимают многих результатов интуиционистов (для интуиционистов, например, не существует разрывных функций).

Интуиционистская реконструкция логики и математики не очень-то вдохновляла, хотя имела широкое распространение. Это была не реконструкция, а скорее разрушение. Интуиционистская математика искалечила классическую математику.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Carlos Casado читать все книги автора по порядку

Carlos Casado - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Вначале была аксиома. Гильберт. Основания математики отзывы


Отзывы читателей о книге Вначале была аксиома. Гильберт. Основания математики, автор: Carlos Casado. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x