Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.

Тут можно читать онлайн Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_popular, издательство ООО «Де Агостини»,, год 2015. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.
  • Автор:
  • Жанр:
  • Издательство:
    ООО «Де Агостини»,
  • Год:
    2015
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. краткое содержание

Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. - описание и краткое содержание, автор Gustavo Pineiro, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Георг Кантор первым среди ученых начал с математической точностью исследовать бесконечность, представлявшую философский интерес. Его новаторский подход к математике воплотился в теории множеств, он сформулировал противоречащие интуиции понятия разных видов бесконечного. До работ, которые были изданы ученым в конце XIX века и стали фундаментальным вкладом в науку, бесконечность, следуя восходившей к Аристотелю научной традиции, понималась как полезная условность. Смелость Кантора стоила ему дорого: его идеи были жестко отвергнуты многими современниками, что, вероятно, послужило причиной его душевной болезни и преждевременной кончины.
Прим. OCR: Из-за особенностей отображения иврита в выражениях алеф(X) заменен на X.

Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. - читать онлайн бесплатно полную версию (весь текст целиком)

Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. - читать книгу онлайн бесплатно, автор Gustavo Pineiro
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
АЛГЕБРАИЧЕСКИЕ ЧИСЛА

Число называется алгебраическим, если является решением уравнения типа a nx n+ a n-X1 n-1+ ... + a X1+ a 0= 0, где a n, a n-1,... ,a 0— целые числа, а a n≠ 0. Например, 7/5 — алгебраическое число, так как является решением уравнения 5х - 7 = 0; еще один пример алгебраического числа — √3, которое является решением уравнения х 2- 3 = 0. Это уравнение называется уравнением второй степени, так как наибольшая степень х в нем — х 2; уравнение, приведенное вначале, — уравнение первой степени (напомним, что x = x1). Мы можем доказать, что √3 является не только решением уравнения x 2- 3 = 0, но и уравнения третьей степени х 3- х 2- 3х + 3 = 0, и уравнения четвертой степени х 4- 9 = 0, и уравнения пятой степени, и шестой и так далее. Однако √3 не является решением уравнений степени меньше 2, которое при этом удовлетворяет всем вышеуказанным условиям. Самая меньшая возможная степень для √3 — вторая, поэтому говорят, что √3 — это алгебраическое число степени 2. Другими алгебраическими числами степени 2 являются, например, √2 и

(1 + √5)/2,

(Другой стороны, можно доказать, что 3√2 — число степени 3, что √2 + √3 — число степени 4, и что все рациональные числа, как в случае с 7/5, являются алгебраическими числами степени 1. Итак, чтобы удалось построить отрезок с помощью линейки без делений и циркуля, его длина должна соответствовать алгебраическому числу, причем степени 1, 2, 4, 8,16 или любой другой, делящейся на 2. Поскольку π — не алгебраическое число, отрезок этой длины такими инструментами построить нельзя. Также нельзя построить отрезок длиной √2, поскольку, хотя это и алгебраическое число, его степень равна 3.

Он задумался о них еще в ходе первых исследований в Галле, и результаты работы привели его к тому, чтобы отнестись к ним серьезно. В 1883 году Кантор писал:

«К мысли о том, чтобы рассматривать бесконечно большое не только в форме безгранично возрастающего [...], но также закрепить его математически с помощью чисел в определенной форме завершенно бесконечного, я пришел почти против собственной воли и в противоречии с ценными для меня традициями, логически вынужденный к этому ходом многолетних научных усилий и попыток. Поэтому я не думаю, что могут найтись доводы, на которые я не сумел бы ответить».

Какие же исследования подтолкнули его допустить возможность существования актуальной бесконечности? Ответ на этот вопрос будет дан в следующей главе.

ГЛАВА З

Исчисление и бесконечность

Теория математической бесконечности постоянно бросает нам вызов, когда мы сталкиваемся с правильными, при этом полностью противоречащими здравому смыслу выводами.

В ее рамках доказывается, что целое не всегда больше любой составляющей его части, и приводятся примеры разных «уровней бесконечности». Эта теория тесно связана с областью математики, восходящей к классическому периоду Античности, — с исчислением.

Георг Кантор и Рихард Дедекинд познакомились случайно в 1872 году во время летних каникул. Несмотря на различия — Кантор был натурой страстной и импульсивной, а Дедекинд гораздо более спокойным и рассудительным,— они обнаружили много общего в своем видении математики. С этой встречи они почти десять лет вели очень интенсивную переписку, в ходе которой впервые обсудили идеи Кантора, впоследствии изложенные в его статьях. В письме от 5 января 1874 года, отправленном из Галле, Кантор спрашивал мнения Дедекинда по следующему вопросу:

«Может ли некая поверхность (например, квадрат, включая углы) вступить в однозначное отношение с кривой (например, с отрезком прямой) таким образом, чтобы каждой точке плоскости соответствовала точка кривой, и наоборот?»

Задача, сформулированная Кантором, была естественным продолжением идей, над которыми он работал в то время. В 1873 году он уже знал, что мощность множества вещественных чисел больше мощности натуральных чисел. Другими словами, он знал, что уровень бесконечности вещественных чисел больше, чем уровень натуральных, хотя в статье 1878 года не заявил об этом открыто.

В этой ситуации логично задаться вопросом: возможно ли множество с еще большей мощностью, чем мощность вещественных чисел? Именно об этом и думал Кантор, когда писал Дедекинду. Проследим, как вопрос о возможности множества с мощностью, большей, чем мощность вещественных чисел, приводит нас к вопросу в письме Кантора.

В предыдущей главе мы убедились, что каждой точке на числовой оси соответствует вещественное число, и наоборот: каждому вещественному числу соответствует точка на оси. Другими словами, между вещественными числами и точками на оси наблюдается взаимно однозначное соответствие (то есть два множества эквивалентны или равномощны). Когда мы говорим о мощности — это то же самое, что говорить о вещественных числах и точках на оси. Какое множество можно выдвинуть в качестве кандидата на большую мощность по сравнению со множеством точек на оси? Поскольку ось — одномерный объект, логично было бы предположить, что нам подошел бы объект с двумерной поверхностью.

Если мы думаем о множестве всех вещественных чисел, а им соответствует числовая ось, почему Кантор говорит об отрезке, то есть только о части прямой, ограниченной двумя точками? Дело в том, что можно доказать: все отрезки, вне зависимости от их длины, эквивалентны друг другу, у них одинаковая мощность и, в свою очередь, любой отрезок эквивалентен полной оси. Таким образом, при изучении мощности не имеет значения, о чем идет речь, — об отрезке или об оси.

Теперь вернемся к вопросу, сформулированному Кантором в письме от 5 января 1874 года: может ли одномерный объект (отрезок, взятый как бесконечная совокупность точек) иметь такую же мощность, что и двумерный объект (квадрат, также взятый как бесконечное множество точек), или, наоборот, мощность квадрата будет больше?

Решение задач, связанных с математической бесконечностью, является, пожалуй, одним из главных успехов нашей эпохи, которым мы можем гордиться.

Лорд Бертран Рассел, 1910 год.

В этом же письме Кантор утверждал, что, разумеется, кардинальное число точек квадрата должно превосходить кардинальное число точек отрезка. Дедекинд согласился, но Кантор также добавлял, что задача тем не менее «очень сложна».

И действительно, на пути к ее решению было много препятствий, и чтобы найти его, Кантору потребовалось три года. Он изложил его Дедекинду в письме от 20 июня 1877 года, и уже 22 июня Дедекинд отправил свое послание, в котором оспаривал аргументацию Кантора. Тот ответил двумя письмами от 25 и 29 июня. В последнем, очень характерном для Кантора, говорилось:

«Прошу Вас извинить мое рвение, если я слишком часто злоупотребляю Вашей добротой и снисходительностью. То, что Вы сообщили, для меня настолько неожиданно и ново, что я не мог бы, так сказать, достичь некоего спокойствия духа, прежде чем получу, мой многоуважаемый друг, Ваше мнение по поводу верности [моего предположения]. Пока Вы не одобрите мои выводы, я могу лишь сказать je le vois, mais je ne le crois pas [«я это вижу, но этому не верю», франц.].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Gustavo Pineiro читать все книги автора по порядку

Gustavo Pineiro - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. отзывы


Отзывы читателей о книге Бесчисленное поддается подсчету. Кантор. Бесконечность в математике., автор: Gustavo Pineiro. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x