Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.
- Название:Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.
- Автор:
- Жанр:
- Издательство:ООО «Де Агостини»,
- Год:2015
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. краткое содержание
Прим. OCR: Из-за особенностей отображения иврита в выражениях алеф(X) заменен на X.
Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Доказательство, что 'P(N) несчетное, основывается на алгоритме, описанном в главе 2 для вещественных чисел. Однако несчетность 'P(N) и R, даже если в ходе доказательства мы рассуждали так же, не гарантирует, что у них одинаковая мощность. Метод диагонали дает нам отрицательный результат, то есть позволяет убедиться, что ни у 'P(N), ни у R мощность не равна X 0, но не показывает, какую конкретно мощность имеет каждое из них, и не дает оснований заключить, что их мощности равны.

Взаимнооднозначное соответствие между множествами и последовательностями нуля и единицы.
В статье 1892 года Кантор доказал, что эти множества равномощные, однако это нельзя заключить на основе диагонального метода; необходимо предъявить отдельное доказательство. Итак, требуется доказать, что 'P(N) и R эквивалентны или что R эквивалентно всем бесконечным последовательностям нуля и единицы.
Для начала вспомним, что способ привычной нам записи натуральных чисел основан на десятичной системе, так как для них необходимы все 10 цифр, а также на степенях числа 10. Когда мы записываем число 235, на самом деле мы пишем 2 · 10 2+ 3 х 10 1+ 5 · 10 0(напомним, что 10 1= 10, а 100 = 1). Нечто похожее происходит с числами, которые не являются целыми, но в этом случае используются степени с отрицательным знаком: 10-1 равное 0,1; 10 -2, равное 0,01, и так далее. 0,76 на самом деле означает 7 ∙ 10 1+ 6 ∙ 10 -2. Интересно подчеркнуть, что числа с бесконечным количеством цифр после запятой, такие как 0,3333..., можно представить в виде бесконечных сумм.
Действительно, 0,333... = 3 ∙ 10 -1+ 3 ∙ 10 -2+ 3 ∙ 10 -3+ 3 ∙ 10 -4+ ... Хотя десятичная запись используется чаще всего, она не единственно возможная: например, числа можно записывать на основе так называемой двоичной системы. Как явствует из ее названия, в ней используются только две цифры — 0 и 1, — а основана она на степенях числа 2. Число 13 в двоичной системе будет записано как 1101, поскольку 13 = 1 ∙ 2 3+ 1 ∙ 2 2+ 0 ∙ 2 1+ 1 ∙ 2 0. Как и в предыдущем случае, этот способ записи не распространяется на целые числа. Например, в двоичной системе число 0,333... будет выглядеть как 0,01010101..., поскольку бесконечная сумма 0 ∙ 2 -1+ 1 ∙ 2 -2+ 1 ∙ 2 -4+ 0 ∙ 2 -5+ 1 ∙ 2 -6в результате даст 0,333... (записанное в десятичной системе).
Понятия теории множеств — известные и необходимые инструменты.
Жак Адамар, французский математик (1865-1963), на конференции 1897 года
Теперь докажем, что множество всех вещественных чисел с 0 по 1 на отрезке числовой прямой эквивалентно 'P(М). Необходимо получить такой результат, при котором каждому числу с 0 по 1 точно соответствует множество натуральных чисел.
Возьмем число 0,333... Как найти эквивалентное ему множество? На рисунке показано, что сначала мы должны записать его в двоичной системе. Получив выражение 0,01010101..., возьмем только его часть после запятой, в данном случае 010101..., и посмотрим, какое множество соответствует этой последовательности. Поскольку это последовательность нечетных чисел, то 0,333... соответствует ей.
Таким же образом, если у нас есть множество, образованное, например, числами 2 и 3, и мы хотим узнать, какому числу оно соответствует, сначала мы должны представить его в виде последовательности нуля и единицы. В данном случае это будет выражение 00110000..., и рассмотрим его как цифры после запятой некоего числа, записанного в двоичной системе. Это число 0,001100000..., которое в десятичной системе будет выглядеть как 0,1875. Таким образом, множеству, состоящему из чисел 2 и 3, соответствует число 0,1875.
Итак, мы видим, что 'P(N) эквивалентно множеству всех чисел между 0 и 1. Но в главе 3 отмечалось, что оно эквивалентно R (любой отрезок эквивалентен всей прямой); таким образом, мы выводим, что 'P(N) эквивалентно R. Наконец, на вопрос, какова же мощность 'P(N), в 1892 году Кантор ответил, что она равна мощности R.

Взаимно однозначное соответствие между вещественными числами (в промежутке от 0 до 1) и множествами, состоящими из вещественных чисел.
Рассмотрим еще одну операцию из области трансфинитной математики.
Вернемся к последовательностям нуля и единицы, но теперь рассмотрим только конечные. Сколько таких последовательностей мы можем образовать, если в них должно быть только две цифры? Всего четыре последовательности: 00, 01, 10 и 11. Если цифр три, то их будет восемь: 000, 001, 010, 100, 110, 101,011, 111, а если цифр всего четыре, то 16. Если цифра одна, то последовательностей будет только две: 0 и 1.
Итак, у нас есть 2 1последовательности из одной цифры, 2 2последовательности из двух цифр, 2 3последовательности из трех цифр и так далее. Логично было бы предположить, что мощность последовательностей из «X 0цифр» будет равна 2 X0. Действительно, в «Обоснованиях» Кантор дает определение возведению мощностей в степень и основывает его на понятии, которое он назвал покрытием. Когда мы составляем бесконечную последовательность из нуля и единицы, утверждает Кантор, мы покрываем каждый элемент N нулем или единицей.

Ответить на вопрос, какова мощность множества всех бесконечных последовательностей, состоящих из 0 и 1, — значит покрыть N, используя два этих элемента. Всего способов «покрытия» чисел 0, 1 и 2 с использованием двух элементов — 2 3; покрытия чисел 0, 1, 2 и 3 — 2 4, значит, как писал Кантор, по определению, мощность всех способов покрытия N двумя элементами равна 2 X0 . К тому же, поскольку множество всех последовательностей нуля и единицы эквивалентно R, мы можем заключить, что и мощность R равна 2 X0 . Поэтому континуум-гипотезу можно сформулировать и как вопрос «равно ли 2 X0 X 1?».
Если бы мы покрывали N тремя элементами, то получили бы мощность 3 X0; другими словами, множество всех бесконечных последовательностей 0, 1 и 2 имеет мощность 3 X0. Но не стоит путаться. Сперва можно подумать, что 3 X0 больше 2 X0 , однако это не так. На самом деле 2 X0 = 3 X0. Чтобы доказать это, достаточно увидеть, что множество последовательностей нуля и единицы эквивалентно множеству последовательностей 0,1 и 2. За этим доказательством стоит идея, что поскольку последовательности нуля и единицы могут рассматриваться как числа, записанные в двоичной системе, таким же образом и последовательности 0, 1 и 2 могут быть представлены как числа, записанные в троичной системе. Таким образом, соответствие между двумя множествами устанавливается посредством изменения системы исчисления.
Читать дальшеИнтервал:
Закладка: