Чарльз Сейфе - Ноль: биография опасной идеи

Тут можно читать онлайн Чарльз Сейфе - Ноль: биография опасной идеи - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_popular, издательство АСТ, год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Ноль: биография опасной идеи
  • Автор:
  • Жанр:
  • Издательство:
    АСТ
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-17-083294-1
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Чарльз Сейфе - Ноль: биография опасной идеи краткое содержание

Ноль: биография опасной идеи - описание и краткое содержание, автор Чарльз Сейфе, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга — история цифры 0, одного из самых необычных изобретений человечества. Споры вокруг этого невинного с виду круглого значка потрясали самые основы науки и религии, не раз приводили к войнам. Легендарные мыслители, от Пифагора до Эйнштейна, пытались разгадать тайну ноля. Древние календари и последние достижения астрофизики, вавилонские глиняные таблички и поиски «теории всего» — обо всем этом в книге «Ноль: биография опасной идеи». Это книга для каждого, кого интересует история математики и культуры, передовые идеи современной науки.

Ноль: биография опасной идеи - читать онлайн бесплатно полную версию (весь текст целиком)

Ноль: биография опасной идеи - читать книгу онлайн бесплатно, автор Чарльз Сейфе
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Когда космический корабль достигнет скорости света, время на нем будет все больше и больше замедляться. Если кораблю удастся достичь скорости света, каждая секунда на борту будет равна бесконечному числу секунд на Земле. За долю секунды будут проходить миллиарды и миллиарды лет, Вселенная проживет свой срок и сгорит. Для астронавта на борту такого корабля время остановится. Длительность будет умножена на ноль.

К счастью, остановить время не так легко. По мере все большего роста скорости время все больше и больше замедляется, но одновременно все больше растет масса космического корабля. Это все равно что катить детскую коляску, в которой младенец все растет и растет. Очень скоро вам придется катить борца сумо, что не так легко. Если вам удастся разогнать коляску еще больше, младенец станет весом с автомобиль… потом с военный корабль… потом с планету… потом со звезду… потом с галактику. По мере того как младенец становится массивнее, ваши усилия дают все меньший и меньший результат. Точно так же вы можете взять космический корабль и разогнать его, все больше приближая его скорость к скорости света. Однако через некоторое время он станет слишком массивен, чтобы разгонять его еще больше. Космический корабль, да и любой объект, обладающий массой, никогда не сможет достичь скорости света. Скорость света — абсолютный предел, достичь его нельзя, уж не говоря о том, чтобы превзойти. Природа защищает себя от неуправляемого ноля.

Впрочем, ноль слишком силен даже для природы. Когда Эйнштейн расширил теорию относительности так, чтобы она включала гравитацию, он не подозревал, что его новые уравнения — общая теория относительности — описывают окончательный ноль и самую худшую из бесконечностей — черную дыру.

В уравнениях теории Эйнштейна пространство и время представлены как различные аспекты одного и того же. Мы уже знали, что ускорение изменяет характер перемещения в пространстве: скорость движения либо увеличивается, либо уменьшается. Новым в уравнениях Эйнштейна было то, что ускорение изменяет не только характер перемещения в пространстве, но и течение времени: оно может ускоряться или замедляться. Таким образом, когда вы придаете ускорение телу, подвергая его действию какой-либо силы (будь это сила тяготения или толчок огромного космического слона), вы меняете характер его перемещения в пространстве и течение на нем времени, иначе говоря, характер перемещения его в пространстве-времени.

Такую концепцию трудно усвоить. Самый простой способ приблизиться к пониманию пространства-времени — через аналогию, представив себе пространство-время как гигантское резиновое полотно. Планеты, звезды и все прочее располагаются на этом полотне, слегка его деформируя. Искривление полотна, порожденное этими объектами, — гравитация. Чем массивнее объект, находящийся на полотне, тем сильнее искривление и больше углубление вокруг объекта и тем больше их стремление туда скатываться.

Кривизна резинового полотна — это не только кривизна пространства, но и кривизна времени тоже. Как пространство искривляется вблизи массивного объекта, так искривляется и время. Оно течет тем медленнее, чем сильнее искажение. То же самое происходит с массой. Когда вы попадаете в сильно искривленные районы пространства, масса тела увеличивается. Этот феномен известен как возрастание массы.

Эта аналогия объясняет орбиты планет: Земля просто катается по вмятине, которую Солнце делает в резиновом полотне. Свет не распространяется по прямой, а идет по искривленному пути вокруг звезд. Чтобы наблюдать этот эффект, британский астроном сэр Артур Эддингтон в 1919 году отправился в экспедицию. Эддингтон определил положение звезды в момент солнечного затмения и обнаружил кривизну, предсказанную Эйнштейном ( рис. 51 ).

Рис 51Гравитация искривляет луч света вокруг Солнца Уравнения Эйнштейна - фото 81

Рис. 51.Гравитация искривляет луч света вокруг Солнца

Уравнения Эйнштейна предсказали кое-что и более зловещее: черную дыру, звезду, имеющую настолько большую плотность, что даже свет не может преодолеть ее тяготение.

Черные дыры начинают жизнь, как и все звезды, в виде большого шара раскаленного газа, в основном водорода. Если бы на него ничто больше не воздействовало, достаточно большой шар коллапсировал бы под действием собственной гравитации, сжавшись до небольшого объема. К счастью для нас, коллапса не происходит потому, что действует другая сила: ядерный синтез. По мере того как газ сжимается, он делается горячее и плотнее, и атомы водорода с возрастающей силой сталкиваются друг с другом.

В конце концов звезда делается такой раскаленной и плотной, что атомы водорода липнут друг к другу и сливаются, образуя гелий и выделяя огромное количество энергии. Эта энергия изливается из центра звезды, заставляя ее немного расшириться. Большую часть своей жизни звезда находится в состоянии устойчивого равновесия: стремление сжаться под действием собственной гравитации уравновешивается энергией ядерного синтеза в центре звезды.

Это равновесие не может сохраняться вечно: звезда обладает лишь ограниченным количеством водородного горючего. Через какое-то время реакция синтеза ослабевает, и равновесие оказывается нарушенным. Как долго длится этот процесс, зависит от размера звезды. По иронии судьбы, чем больше звезда (чем большим запасом водорода она обладает), тем короче ее жизнь, потому что ядерная реакция протекает более бурно. У Солнца осталось топлива примерно на 5 миллиардов лет, но пусть это вас не успокаивает. Температура Солнца будет постепенно повышаться перед концом, вскипятив океаны Земли и сделав ее такой же непригодной для жизни, как Венера. Нам еще повезет, если жизни на Земле отведен миллиард лет. После продолжительной серии предсмертных судорог — точный порядок событий зависит от массы звезды — двигатель ядерного синтеза прекращает работать, и наступает коллапс под действием гравитации.

Закон квантовой механики, именуемый принципом запрета Паули, не дает материи сжаться в точку. Открытый в середине 1920-х годов немецким физиком Вольфгангом Паули, принцип запрета гласит, грубо говоря, что никакие два предмета не могут находиться в одном и том же месте в одно и то же время. В частности, никакие два электрона с одним и тем же квантовым состоянием не могут находиться в одной точке. В 1933 году индийский физик Субраманьян Чандрасекар понял, что принцип запрета Паули обладает лишь ограниченной способностью бороться с гравитацией.

По мере увеличения давления внутри звезды в соответствии с принципом запрета электроны должны двигаться все быстрее и быстрее, чтобы избегать друг друга. Однако существует предел скорости: электроны не могут превысить скорость света, так что если давление на материю возрастает, электроны не могут двигаться достаточно быстро, чтобы предотвратить коллапс. Чандрасекар показал, что коллапсирующая звезда с массой примерно 1,4 массы Солнца обладает достаточной гравитацией, чтобы преодолеть барьер, устанавливаемый принципом Паули. Электроны в звезде, масса которой превышает предел Чандрасекара, не могут помешать ее коллапсу. Сила тяготения так велика, что электроны прекращают сопротивление: они сливаются с протонами, образуя нейтроны. Массивная звезда кончает тем, что превращается в гигантский шар нейтронов: нейтронную звезду.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Чарльз Сейфе читать все книги автора по порядку

Чарльз Сейфе - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Ноль: биография опасной идеи отзывы


Отзывы читателей о книге Ноль: биография опасной идеи, автор: Чарльз Сейфе. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x