LibKing » Книги » Научные и научно-популярные книги » sci_popular » Петер Шпорк - Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем

Петер Шпорк - Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем

Тут можно читать онлайн Петер Шпорк - Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем - бесплатно полную версию книги (целиком). Жанр: Popular, издательство Ломоносовъ, год 2012. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Петер Шпорк - Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем
  • Название:
    Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем
  • Автор:
  • Жанр:
  • Издательство:
    Ломоносовъ
  • Год:
    2012
  • ISBN:
    978-5-91678-147-2
  • Рейтинг:
    3.77/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Петер Шпорк - Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем краткое содержание

Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем - описание и краткое содержание, автор Петер Шпорк, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В своей поистине сенсационной книге немецкий нейробиолог Петер Шпорк приглашает исследовать мир новой, революционной науки — эпигенетики. Он объясняет, почему от рака умирают даже те люди, которые не унаследовали раковые гены и не вели нездоровый образ жизни; почему взрослые склонны к определенным болезням, если в младенческом возрасте испытывали недостаток любви; как наш образ жизни может повлиять на судьбу наших внуков. И показывает, что может сделать каждый из нас, чтобы прожить здоровую и долгую жизнь.

Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем - читать онлайн бесплатно полную версию (весь текст целиком)

Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем - читать книгу онлайн бесплатно, автор Петер Шпорк
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Так что придется немного заняться биохимией. Но не более, чем это необходимо.

Метилирование ДНК Слева основания цитозин и гуанин всегда вместе образуют - фото 2

Метилирование ДНК. Слева — основания цитозин и гуанин всегда вместе образуют ступеньку в молекуле ДНК, так как атомы водорода (Н) каждого из оснований притягивают их друг к другу (водородные мостики). Фермент ДНК-метилтрансфераза (DNMT) связывается с цитозином, когда хочет прикрепить метильную группу (СНЗ). Справа — модель метилированного участка ДНК. Метилирование приводит к тому, что наследственную информацию на этом участке прочитать невозможно.

Темой нескольких берлинских докладов были вещества под названием ДНК-метилтрансферазы (сокращенно DNMT). Известно 4 типа ДНК-метилтрансфераз. Название позволительно забыть, но функция этих веществ настолько важна, что ее стоит запомнить: ДНК-метилтрансферазы встраивают в наследственное вещество крохотные, но чрезвычайно действенные задвижки и таким образом выключают гены. Следовательно, они имеют право решать, какие белки клетка синтезирует, а какие нет.

Задвижки — это метильные группы, то есть простейшие химические структуры, состоящие из одного атома углерода и трех атомов водорода. При необходимости ДНК-метилтрансферазы прочно прикрепляют эти группы к одной из букв генного текста, точнее — к основанию цитозин. Если этот цитозин, как выражаются химики, «метилирован», то считывающие генный текст белки не смогут присоединиться к двойной спирали ДНК. Соответствующий ген выключен.

В клетках млекопитающих такими задвижками снабжены больше двух третей соответствующих участков. Речь идет лишь о тех местах, где наблюдается большое количество пар цитозиновых оснований, расположенных на обеих нитях ДНК с некоторым смещением относительно друг друга. Это происходит, когда основания цитозин и гуанин, вместе образующие ступеньку ДНК, часто чередуются (CpG-острова). Тогда генный текст одной цепочки выглядит так: CGCGCG, а другой — так: GCGCGC. В этом случае ДНК метилирована по обеим цепочкам. Благодаря этому хитрому механизму клетка при делении передаст по наследству обеим своим дочкам модель метилирования собственной ДНК. То есть каждая дочка наследует, как описано выше, одну из двух материнских цепочек ДНК. Если бы метилирована была лишь одна цепочка, какая-то из дочерних клеток не получила бы эту информацию, а выключенные гены вновь были бы активированы.

Модель метилирования соответствует типу клетки и четко определяет, что клетка может, а что — нет. В оплодотворенной яйцеклетке метилирование практически отсутствует, поскольку из нее развиваются все типы соматических клеток. Только когда миллиарды дочерних клеток разделяются по назначению, ДНК-метилтрансферазы встраивают одну задвижку за другой.

Как именно это происходит, пока не изучено. Однако бременский биохимик и специалист по ДНК-метилтрансферазам Альберт Йельч предполагает, что клетка отключает те участки ДНК, которые ей в данный момент не нужны. «Идея заключается в том, что модели метилирования стабилизируют и фиксируют активность генома, — говорит ученый. — Если тот или иной ген был активирован, он и дальше будет настроен на активность».

Например, этот простой принцип объясняет, почему эмбриональная клетка в будущей кожной ткани сама программируется как клетка кожи и передает эту программу по наследству своим дочкам, так что впоследствии из нее могут получаться только клетки кожи. Естественно, любая еще не дифференцированная клетка по этой модели может развиваться в любой вид ткани. Решающее значение имеют при этом сигналы организма, активизирующие определенную программу внутри клетки. В заключение метильные группы обеспечивают клетке долгосрочное запоминание этой программы.

Так вкратце можно описать то, что эпигенетики понимают под «клеточной памятью». Эпигенетическая программа замораживает модели активации генов и таким образом запоминает информацию. Данный принцип также позволяет объяснить, почему на геном влияют не только программы биологического развития, но и повседневные внешние воздействия. Последние посредством биохимических сигналов организма тоже могут побудить клетки считывать или подавлять гены, тем самым предоставляя метилтрансферазам возможность встраивать в ДНК новые задвижки.

Гистоновый код: искусство упаковки с хвостами

Разумеется, на берлинской конференции по эпигенетике я узнал много нового. Даже из докладов. Например, мне стало известно, что у многих белков есть хвост. У некоторых даже два. Это, разумеется, не отросток позвоночника, как у мышей или кошек, а конец или начало цепочки, из которой состоит белок. Хвост торчит из конструкции, получившейся в результате синтеза молекулы.

Конечно, можно посчитать, что природа пошутила, снабдив некоторые из своих кирпичиков хвостами. Однако в природе практически все имеет смысл, вот и хвосты белков не исключение — они играют решающую роль в программировании наследственного материала. Чтобы объяснить это нагляднее, мне придется уменьшиться в миллион раз и совершить путешествие в невообразимо миниатюрный наномир соматических клеток.

Внутри клетки кипит жизнь: там есть белковые фабрики, электростанции, клеточный скелет, множество снующих туда-сюда молекул-медиаторов и молекул-транспортеров, а также многое другое. Но в центре действия — неподвижное клеточное ядро, толстое и круглое, словно пчелиная матка в улье. Размер ядра — одна сотая миллиметра, и это самая крупная часть клетки. Через одну из многочисленных пор я попадаю внутрь ядра. Обычно этим путем наружу проникает транспортная РНК. Она доставляет на белковые фабрики считанные с ДНК «монтажные схемы».

У меня перехватывает дыхание: внутри ядра тоже повсюду снуют белки, оседающие в разных местах тонюсенькой ниточки. Белки участвуют в считывании генетического кода, а ниточка — не что иное, как одна из 46 молекул ДНК — хромосом, содержащих этот код. Толщина хромосомы — всего 0,3 нанометра, то есть треть одной миллионной миллиметра, зато длина ДНК в совокупности составляет легендарные два метра.

Если бы эти нити по всей своей длине беспорядочно переплетались, воцарился бы хаос. (Попробуйте-ка уложить два метра ниток в коробочку размером с клеточное ядро.) К счастью, существуют структуры, отвечающие за порядок: я вижу округлые образования из нескольких белков, на которые ДНК наматывается, словно кабель на барабан. Одновременно множество подобных барабанов связываются в цепочку, напоминающую жемчужное ожерелье.

Издалека это ожерелье выглядит очень изящно. И неудивительно, ведь поперечник нити — всего одиннадцать миллионных миллиметра. Но в некоторых местах заметны утолщения. Я подхожу поближе и обнаруживаю, что именно там барабаны вместе с нитью ДНК делают еще один виток. На этот раз они образуют спираль. В результате нить еще раз заметно укорачивается и утолщается, образуя 30-нанометровую фибриллу.

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Петер Шпорк читать все книги автора по порядку

Петер Шпорк - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем отзывы


Отзывы читателей о книге Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем, автор: Петер Шпорк. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img