Сергей Суворов - О чем рассказывает свет
- Название:О чем рассказывает свет
- Автор:
- Жанр:
- Издательство:Военное издательство Министерства Обороны СССР
- Год:1963
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Суворов - О чем рассказывает свет краткое содержание
В брошюре рассказывается, каким образом возникают лучи света из далеких миров. Не подлежит сомнению, что они могут начинать свой путь далеко от Земли и даже от солнечной системы. Где же во Вселенной начинают свой путь эти лучи? Как лучи из далеких миров превращены в мощное средство исследования Вселенной? Из каких веществ состоят Солнце и ряд других звезд? Как ученые узнали об этом? Об этом им рассказали лучи света, пришедшие от звезд. Куда и с какой скоростью движутся звезды? Об этом рассказали те же лучи света. Современные физики изучают тончайшие детали строения атомов. Как они этого достигают? И об этом им говорят лучи света, испускаемые атомами. В брошюре говорится, что свет рождается в веществе. Именно поэтому свет может рассказать, из каких веществ состоят звезды, какие металлы входят в состав сплавов, как построен атом, и многое другое.
О чем рассказывает свет - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
А. Г. Столетов осветил пластинку АА светом от вольтовой дуги (она же дуга Петрова). На рис. 33 схематически показано, как этот свет, пройдя через световой фильтр Ф (пропускающий лучи нужных нам длин волн), а затем сквозь сетку ВВ, падает на пластинку АА. При освещении пластинки АА светом через гальванометр проходит ток.
Из этого опыта Столетов заключил, что свет вырывает из металлической пластинки отрицательные электрические заряды. Эти заряды движутся к положительно заряженной сетке, и таким образом электрическая цепь замыкается, по ней идет ток.
Рис. 33. Опыты Столетова. Пластинка АА освещается светом от вольтовой дуги Д. С пластинки срываются отрицательные заряды, ток в цепи идет
Столетов освещал пластинку светом различного, цвета (различной частоты) и исследовал, как изменяется при этом сила тока в цепи. Обнаруженные Столетовым закономерности стали исходным пунктом развития новых представлений о свете.
Явления, которые наблюдал и описал А. Г. Столетов, ныне получили название фотоэлектрического эффекта или просто фотоэффекта(световое действие). Когда позднее (в 1895 г.) были открыты электроны, было установлено, что электрические заряды, вырываемые светом из пластинки, — это электроны. Электроны — это мельчайшие частицы вещества, обладающие наименьшим отрицательным электрическим зарядом. Фотоэффект состоит, следовательно, в том, что свет вырывает из металлической пластинки электроны. Физики научились измерять энергию (скорость) вырванных электронов.
Необычные закономерности фотоэффекта
Необычайность фотоэффекта заключается не в самом факте вырывания электронов светом, а в той закономерности, которая связывает энергию света и энергию вырванных электронов.
Сначала физикам казалось, что энергия фотоэлектронов должна зависеть от энергии падающих световых волн, а стало быть, от яркости света. Это вытекало из волновых представлений о природе света. Ведь казалось, что яркость света должна определяться амплитудой колебаний, а энергия в любой волне пропорциональна квадрату амплитуды.
Каково же было удивление ученых, когда они обнаружили, что от яркости падающего света зависит только общее количество вырванных им электронов, а вовсе не энергия каждого отдельного электрона. Энергия отдельного фотоэлектрона зависит от цветности, точнее говоря, от частоты падающего света: чем больше частота падающего света, тем больше энергия фотоэлектрона.
Эту закономерность никак нельзя объяснить с помощью волновых представлений о свете.
Свет как поток фотонов
Более пятнадцати лет прошло после первых опытов Столетова, прежде чем ученые нашли разгадку странных законов, связывающих энергию фотоэлектронов с частотой вызывающего их света.
За это время произошло еще одно важное событие. В 1900 году немецкий физик Макс Планк (1858—1947) исследовал условие, при котором устанавливается равновесие в спектре излучения «абсолютно черного тела». Он пришел к выводу, что этим условием является такое распределение энергии по спектру, при котором она пропорциональна частоте. Получается так, как будто энергия света может перемещаться только определенными порциями (квантами), каждая из которых пропорциональна частоте света.
Другой немецкий физик Альберт Эйнштейн (1879—1955) пошел дальше: он сделал вывод о том, что световой поток состоит из потока частиц с энергией, пропорциональной частоте; эти частицы получили наименование фотонов.Чем больше частота света, тем больше энергия фотона. Следовательно, энергия фотона фиолетового света почти в два раза больше энергии фотона красного света. Эйнштейн показал, что, только приняв представление о фотонной структуре света, можно объяснить странную закономерность фотоэффекта, открытого еще Столетовым.
При этом предположении механизм фотоэффекта представляется так. В металлах имеется много «свободных» (т. е. не связанных с определенными атомами металла) электронов. Когда фотон падающего света ударяется в один из них, он передает электрону всю свою энергию. Если эта энергия достаточно велика, то электрон может вылететь из пластинки. Ясно, что энергия вырванного электрона прямо зависит от энергии выбившего его фотона, т. е. от частоты падающего на пластинку света.
Таким образом, фотоэффект явился одним из первых явлений, указывающих на корпускулярное строение света.
Дальнейшее развитие физики подтвердило справедливость предположения, что свет излучается и поглощается в виде фотонов и что их энергия тем больше, чем больше частота света.
Что такое свет —волны или частицы?
Но что же в таком случае представляет собой свет — волны или частицы?
После открытия фотоэффекта этот вопрос казался окончательно запутанным и противоречивым. В прежние времена споры о природе света были ясными. Ньютон и его последователи считали, что свет — это корпускулы, т. е. частицы, а не волны. Иначе как же объяснить прямолинейность распространения света? Ломоносов, Эйлер, Юнг, Френель, а за ними все физики середины XIX века пришли к выводу, что свет — это волны, а не корпускулы. Физики нашли способ объяснить, исходя из волновойточки зрения, почему свет распространяется прямолинейно, и даже показали, что это не всегда так бывает; например, в явлениях дифракции свет огибает препятствия, как это делает и звук, только препятствия должны быть для этого очень малы, сравнимы с длиной волны света.
Словом, в прежние времена волновая точка зрения исключала корпускулярную, и наоборот. Казалось разумным отстаивать либо одну, либо другую из них. Но никто не отстаивал обе точки зрения одновременно.
Теперь дело обстояло иначе. Было ясно, что свет обладает волновыми свойствами. Об этом говорят опыты по интерференции и по дифракции света. Но также ясно и то, что свет обладает корпускулярными свойствами. Об этом говорят опыты по фотоэффекту. И те и другие опыты совершенно достоверны и неопровержимы. И выводы из тех и других опытов совершенно определенны: из первых следует, что свет обладает волновыми свойствами, а из вторых—что свет обладает корпускулярными свойствами.
Выходит, что все прежние представления о свете были односторонними;они подмечали только ту или иную его сторону и не видели все свойства света в их единстве.Ныне, в итоге многовекового развития физики, в результате тщательной опытной проверки, мы вправе сделать заключение: свет, т. е. электромагнитные излучения, является одной из форм материи, обладающей одновременно и свойствами частиц и свойствами волн.
Читать дальшеИнтервал:
Закладка: