Маркус Чоун - Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной
- Название:Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной
- Автор:
- Жанр:
- Издательство:Ломоносовъ
- Год:2012
- Город:Москва
- ISBN:978-5-91678-095-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Маркус Чоун - Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной краткое содержание
Маркус Чоун — британский ученый, журналист и писатель, один из лучших популяризаторов науки сегодняшнего дня. Мало кто умеет так, как он — просто, доходчиво, с легким юмором, — рассказать о сложнейших научных представлениях, будь то принципы квантовой механики или космологические концепции.
В своей новой книге «Чудеса обычных вещей» Маркус Чоун демонстрирует удивительный, обманчиво простой принцип знакомства с миром современной физики: он берет самые обычные вещи и явления и заставляет их рассказывать о тайнах мироздания, о загадках микро- и макромира.
Под пером Маркуса Чоуна обыкновенное оконное стекло повествует о вероятностях, управляющих Вселенной. Капелька крови на пальце, оставшаяся после укола, делится впечатлениями о процессах, происходящих в глубинах звезд. А заурядная электрическая лампочка и доски пола под ногами превращаются в парадоксальные, загадочные предметы, которые, оказывается, в принципе не должны существовать!
Маркус Чоун (р. 1959) — в прошлом радиоастроном, успешно работавший в Калифорнийском технологическом институте; ныне — постоянный автор журнала «Нью сайентист», теле- и радиоведущий, популяризатор науки.
Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Тепловая энергия — самая рядовая форма энергии, нижняя ступенька лестницы, конечный шлак Вселенной. Это энергия беспорядка, случайности, хаотичного движения микроскопических атомов. В конечном итоге, когда звук падения камня рассеивается в воздухе, а галечная шрапнель успокаивается, заняв новые места на пляже, все, что остается, — это тепло. Таким образом, когда камень падает на пляж, происходит, в сущности, не что иное, как трансформация гравитационной энергии в тепловую. Именно эту трансформацию и имел в виду фон Майер, когда он предположил, что источник солнечного тепла — метеориты, дождем сыплющиеся на наше светило. Заменим поверхность Солнца пляжем, а космические камни — метеориты — земным камнем, и вот пожалуйста: перед нами идея фон Майера в самом общем виде.
«Метеоритная гипотеза» была с восторгом подхвачена Уильямом Томсоном (1824–1907), более известным как лорд Кельвин. Именно Кельвину, одному из величайших ученых XIX столетия, мы обязаны температурной шкалой, которой до сих пор пользуются все ученые, и первым трансатлантическим телеграфным кабелем. Он также считал вопрос о том, что именно поддерживает высоченную температуру Солнца, одной из главных, хотя и трудно разрешимых проблем эпохи. Кельвин внимательно рассмотрел метеоритную гипотезу. Однако, будучи подвергнута пристальному изучению, она рассыпалась в прах. Чтобы обеспечить выход солнечной энергии, соответствующий измерениям, слой метеоритного мусора, накапливающегося на поверхности Солнца, должен расти со скоростью десять метров в год. Это повлекло бы за собой некоторый прирост диаметра Солнца — впрочем, слишком маленький, чтобы его можно было обнаружить экспериментально, так что ахиллесова пята идеи была не в этом. Кельвин предположил, что космический мусор, падающий на Солнце, должен пребывать в некой области пространства, которая ближе к Солнцу, чем к Земле. Если бы это было не так, то при движении Земли по орбите вокруг Солнца наша планета сама подбирала бы этот мусор, отчего менялись бы орбитальная скорость Земли и продолжительность года. Однако подобных эффектов никто не наблюдал. А если весь мусор, падающий на Солнце, пребывает в некой области внутри земной орбиты, то возникает другая проблема: этот мусор должен обладать небольшой, но ощутимой силой собственного тяготения. По расчетам Кельвина, ее было бы достаточно, чтобы повлиять на движение внутренних планет — Меркурия и Венеры — по своим орбитам. И снова та же картина: подобный эффект никем не наблюдался.
К 1862 году Кельвин [48] Надо сказать, что в 1862 г. Уильям Томсон еще не был лордом Кельвином. Королева Виктория пожаловала ученому пэрство с титулом «барон Кельвин» в 1892 г. Однако в литературе чаще встречается именно лорд Кельвин, а не Уильям Томсон — вне зависимости от того, о каком периоде жизни ученого идет речь. Автор данной книги повсюду именует Уильяма Томсона просто Кельвином. Это, разумеется, неточность (если не сказать фамильярность). «Кельвин» — не имя и не фамилия, а титул, который полностью звучит так: «1-й барон Кельвин из Ларгса» (при этом Ларгс — город, а Кельвин — река, близ которой располагалась лаборатория Уильяма Томсона, работавшего и преподававшего в Университете Глазго). Тем не менее авторское «Кельвин» повсюду сохранено.
распрощался с метеоритной гипотезой.
Вместо этого он воодушевился другим предположением: идеей, что Солнце сохраняет высокую температуру, потому что оно медленно сжимается. «Гипотеза сжатия» была детищем шотландского гидрографа Джона Джеймса Уотерстона (1811–1883), который, независимо от фон Майера, в 1853 году тоже пришел к метеоритной идее. Кстати, научный доклад именно Уотерстона, а не фон Майера привлек внимание Кельвина к метеоритной гипотезе. Красота идеи сжатия Солнца состояла в том, что это сжатие, по сути, неизбежно. Солнце — гигантский газовый шар; сила тяготения делает все возможное, чтобы сжать этот шар, между тем как сила раскаленного газа, рвущегося наружу, делает все от нее зависящее, чтобы расширить его. Эти две противоположные силы находились бы в полном, даже изысканном равновесии, если бы не одна проблема: Солнце постоянно теряет тепло, излучая его в пространство. Потеря тепла лишает газ его способности рваться наружу, пренебрегая гравитацией. Получается, что сила тяготения не просто владычествует, но набирает все больше и больше власти, а из этого следует только один вывод: Солнце должно сжиматься.
При сжатии газовый шар разогревается. Вновь вспомним о нагреве воздуха в велосипедном насосе [49] Более сложное объяснение этого явления требует использования закона сохранения энергии. В процессе откачивания энергия движения поршня превращается в тепловую энергию воздуха позади поршня — другими словами, вызывает хаотичное, бешеное движение молекул воздуха. (Прим. автора).
. Можно представить сжатие газа и по-другому — в виде очень медленного метеоритного дождя. Однако в данном случае речь идет не о малом количестве вещества в виде камней, стремительно пронзающих гравитацию Солнца (как это было бы при метеоритном нагреве), а о том, что сквозь поле тяготения Солнца очень медленно «проваливается» огромное количество вещества — собственно, вся масса светила. Оба механизма «подключены» к одному и тому же могучему источнику, первичному источнику энергии во Вселенной — гравитации. А гравитационная энергия, как понял Уотерстон, потенциально куда больший резервуар энергии, чем любое химическое топливо.
Вычисления Уотерстона показали, что если бы Солнце сжималось на 280 метров в год — это всего лишь 10 миллионных от его диаметра, и такое сжатие абсолютно не заметно с Земли, — то подобной убыли хватило бы, чтобы восполнять постоянно отдаваемое космосу тепло. Идея сжатия была весьма многообещающей, но ее требовалось проверить. Кельвин и его немецкий современник Герман фон Гельмгольц нашли способ сделать это. Если Солнце сжимается сегодня, рассудили ученые, оно должно было сжиматься и в прошлом. Когда-то давным-давно Солнце, надо полагать, было гигантским газовым облаком, намного б о льшим, чем даже нынешняя Солнечная система. Кельвин и Гельмгольц рассчитали, какое количество гравитационной энергии должно было превратиться в тепло, пока это колоссальное облако сжималось до того объема Солнца, который известен сейчас. А затем они задались вопросом: как долго это тепло могло поддерживать сияние Солнца на уровне, наблюдаемом в современную эпоху? И получили ответ: не более 30 миллионов лет.
Продолжительность жизни в 30 миллионов лет — гораздо больше, чем пять тысяч лет для Солнца, работающего на угле. Но, как ни удивительно, этого все равно недостаточно. Существуют серьезные доказательства со стороны геологии и биологии, что Земля — а следовательно, и Солнце, коль скоро его возраст никак не меньше возраста Земли, — значительно старше, чем это получалось по оценке Кельвина и Гельмгольца.
Читать дальшеИнтервал:
Закладка: