Маркус Чоун - Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной
- Название:Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной
- Автор:
- Жанр:
- Издательство:Ломоносовъ
- Год:2012
- Город:Москва
- ISBN:978-5-91678-095-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Маркус Чоун - Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной краткое содержание
Маркус Чоун — британский ученый, журналист и писатель, один из лучших популяризаторов науки сегодняшнего дня. Мало кто умеет так, как он — просто, доходчиво, с легким юмором, — рассказать о сложнейших научных представлениях, будь то принципы квантовой механики или космологические концепции.
В своей новой книге «Чудеса обычных вещей» Маркус Чоун демонстрирует удивительный, обманчиво простой принцип знакомства с миром современной физики: он берет самые обычные вещи и явления и заставляет их рассказывать о тайнах мироздания, о загадках микро- и макромира.
Под пером Маркуса Чоуна обыкновенное оконное стекло повествует о вероятностях, управляющих Вселенной. Капелька крови на пальце, оставшаяся после укола, делится впечатлениями о процессах, происходящих в глубинах звезд. А заурядная электрическая лампочка и доски пола под ногами превращаются в парадоксальные, загадочные предметы, которые, оказывается, в принципе не должны существовать!
Маркус Чоун (р. 1959) — в прошлом радиоастроном, успешно работавший в Калифорнийском технологическом институте; ныне — постоянный автор журнала «Нью сайентист», теле- и радиоведущий, популяризатор науки.
Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
13
Ричард Филлипс Фейнман (1918–1988) — выдающийся американский ученый. Один из создателей квантовой электродинамики. Предложил партонную модель нуклона (1969), теорию квантованных вихрей. Реформатор методов преподавания физики в вузе. Лауреат Нобелевской премии по физике 1965 г. Приведенная цитата взята из знаменитых «Фейнмановских лекций по физике»: Р. Фейнман, Р. Лейтон, М. Сэндс. Фейнмановские лекции по физике. Перевод с английского А. В. Ефремова, Г. И. Копылова, О. А. Хрусталева. — М.: Мир, 1965.— Вып. III. Гл. 38.
14
Адриан Митчелл (1932–2008) — английский поэт, романист и драматург. Один из критиков назвал его «британским Маяковским».
15
См. главу 1. (Прим. автора).
16
Двойное название объясняется тем, что закон был независимо переоткрыт французским физиком Эдмом Мариоттом (1620–1684) в 1679 г.
17
Замечание, сделанное Эйнштейном в апреле 1921 г., во время его первого визита в Принстонский университет. Цит. по: Ronald W. Clark, Einstein: The Life and Times , New York: Avon Books, 1971.
18
Проблема заключалась в том, что есть исключения — элементы, атомные веса которых не кратны атомному весу водорода. Например, атомный вес хлора — 35,5. Праут не знал, что хлор бывает нескольких видов (речь идет об изотопах), атомный вес каждого вида в точности кратен атомному весу водорода, но в среднем получается именно 35,5. (Прим. автора).
19
По сути, альфа-лучи, испускаемые радием, — не что иное, как ядра атомов гелия, но тут мы немного забегаем вперед. Просто к тому моменту, когда Резерфорд обнаружил их, они уже соединились с электронами, и получились именно атомы гелия. (Прим. автора).
20
На самом деле есть еще третий тип лучей, которые может испускать радиоактивное вещество. Это «гамма-излучение» — высокоэнергетическое электромагнитное излучение с чрезвычайно малой длиной волны. (Прим. автора).
21
Термин «ядро» не использовался до 1912 года. (Прим. автора).
22
Из эссе Чарлза Перси Сноу «Резерфорд». Перевод Г. Льва. Цит. по: Ч. П. Сноу. Портреты и размышления. — М.: Прогресс, 1985.
23
См. главу 1. (Прим. автора).
24
Темная энергия невидима и заполняет все пространство, а его гравитационная сила отталкивания ускоряет расширение Вселенной. Плотность этой энергии ошеломительна: она выражается числом, где за единицей следуют 120 нулей. И все же это меньше, чем величина, предсказываемая квантовой теорией — лучшим объяснением реальности на сегодняшний день. (Прим. автора).
25
Де Бройль думал, что волны материи — и впрямь волны материи. Но вспомним, что волна, ассоциированная с частицей подобной электрону, гораздо более абстрактна. Это вероятностная волна, которая распространяется в соответствии с уравнением Шрёдингера, и высота этой волны в любом месте — строго говоря, квадрат высоты — определяется шансом, или вероятностью нахождения здесь частицы. (Прим. автора).
26
Другое популярное объяснение заключается в том, что существует бесконечное количество параллельных реальностей, «сброшюрованных» как страницы бесконечной книги. Эта «многомировая интерпретация» предполагает следующее: когда частица находится в суперпозиции, соответствующей пребыванию в двух местах одновременно, на самом деле она пребывает в двух местах не одной и той же реальности; то есть одно «место» — в одной реальности, а второе — в «соседней». С этой точки зрения частица проходит только через одну прорезь в светонепроницаемом экране, но интерферирует она с частицей, которая прошла сквозь другую прорезь в соседней реальности.(Прим. автора).
27
Здесь мы по-прежнему говорим об «акте наблюдения», или взаимодействии пули со стенкой, отчего пуля начинает некоторым образом рыскать из стороны в сторону. Другими словами, мы говорим, что неопределенность не свойственна частице «от рождения», она порождается актом наблюдения. На самом же деле неопределенность именно свойственна частице. Лучшая иллюстрация этого — декогерентность, распад суперпозиционных состояний. (Прим. автора).
28
Цит. по: Р. Фейнман, Р. Лейтон, М. Сэндс. Фейнмановские лекции по физике. Перевод с английского А. В. Ефремова, Г. И. Копылова, О. А. Хрусталева. — М.: Мир, 1965. — Вып. III. Гл. 38.
29
Здесь имеется в виду «масса покоя». Некоторые частицы, такие, как фотоны, не имеют массы покоя. Они рождены, чтобы двигаться со скоростью света, и не могут существовать в покое по отношению к чему-либо или кому-либо. (Прим. автора).
30
См. главу 2. (Прим. автора).
31
Конечно, ширина и долгота используются, чтобы точно определить местоположение на поверхности земного шара. Но это возможно только потому, что все точки на поверхности находятся на одном и том же расстоянии от центра Земли.
32
Этим подчеркивается лишь то, что квантовая теория — просто-напросто еще одна теория о том, что мы может узнать или измерить, — а это, собственно, и есть смысл любой научной теории. Если мы знаем только результат события — например, результат взаимодействия между двумя идентичными частицами, — мы не вправе спрашивать, откуда этот результат взялся. В сущности, такой вопрос «незаконен» с точки зрения науки. Он лишен смысла. Как сказал Нильс Бор: «Квантового мира не существует. Есть только абстрактное физическое описание. Ошибочно думать, что задача физики — выяснить, что там такое природа. Физику заботит, что мы можем сказать о природе». [Это высказывание Нильса Бора было впервые приведено его сотрудником Оге Петерсеном в статье «Философия Нильса Бора» («Бюллетень ученых-атомщиков». Т. 19. № 7. Сентябрь, 1963) Прим. перев .]. (Прим. автора).
33
«Стрела» и «стрелка» в русском языке — по сути, одно и то же слово, в отличие от английского языка, где стрела — это arrow, а стрелка часов — hand. Тем не менее образ удобный и внятный, искать ему замену было бы неправильно, просто нужно помнить, что, когда речь идет о вероятностях, употребляется слово «стрела», а в реальных часах фигурируют, конечно же, «стрелки».
34
На самом деле все частицы с полуцелым спином —1/2, 3/2, 5/2 и так далее — фермионы, а частицы с целым спином — 0,1,2 и так далее — бозоны. (Прим. автора).
35
Доказать, что частицы со спином 1/2 (или, в общем случае, частицы с полуцелым спином) подчиняются принципу запрета, было очень непросто. Только в 1940 году — спустя 16 лет после того, как он сформулировал принцип запрета, — Паули доказал так называемую теорему о связи спина со статистикой. (Прим. автора).
Читать дальшеИнтервал:
Закладка: