Валерий Родиков - Приключения радиолуча
- Название:Приключения радиолуча
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1988
- Город:М.
- ISBN:5-235-00094-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Валерий Родиков - Приключения радиолуча краткое содержание
Книга об одном из великих открытий в истории человечества — радиоволнах, о прошлом, настоящем и возможном будущем обширнейшей научно-технической отрасли — радиоэлектроники. Читатель также узнает о причудах радиоволн: радиолокационных миражах-«призраках», «ангелах», «летающих тарелках»; о том, вредны ли радиоизлучения…
Приключения радиолуча - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В своих воспоминаниях он писал: «Особенно приводили меня в изумление все большие расстояния, вплоть до которых я мог обнаружить действие. До тех пор привыкли считать, что электрические силы убывают по закону Ньютона и, следовательно, с увеличением расстояния быстро становятся незаметно малыми».
Добавка в виде тока смещения, введенная Максвеллом в уравнение Ампера, привела к тому, что в решении максвелловых уравнений, помимо членов, убывающих как обратный квадрат расстояния, то есть по известному нам со школы закону Кулона, к счастью, содержится еще один член, названный волновым. Он описывает часть поля, которая спадает гораздо медленнее, чем обратный квадрат расстояния, а именно как величина обратная расстоянию в первой степени.
Читатель может спросить: почему к счастью? Да потому, что этому подарку природы, предсказанному Максвеллом, и обязана своим рождением вся нынешняя радиотехника.
Кажется чудом, что человек, говорящий во Владивостоке, с помощью каких-то электрических воздействий может быть услышан через многие тысячи километров, например, в Бресте. И все благодаря тому, что электромагнитное поле спадает обратно пропорционально не квадрату, а лишь первой степени расстояния.
Мы уже говорили о том, как «отрываются» электромагнитные волны от рождающих их колебаний тока в вибраторе. Не сразу рвется «пуповина», поначалу связывающая волну с вибратором. На расстоянии, равном примерно длине волны, электромагнитное поле еще не разорвало своих связей с породившими его зарядами и токами. Это пока поле индукции. Сильны еще электрические силы, подчиняющиеся закону Кулона. Лишь на расстоянии нескольких длин волн силы индукции практически исчезают и начинает главенствовать поле бегущей волны — поле излучения.
Герц много экспериментировал с электромагнитными волнами. Он убедился, что они, как и свет, распространялись прямолинейно. Металлический экран не пропускал их, зато изолятор (как, например, закрытая дверь) не был помехой.
А будут ли новые волны преломляться подобно световым лучам в призме? Чтобы ответить на этот вопрос, Герц сооружает почти двухтонную призму из твердого битума. И призма действительно преломляет волны. Он даже определил коэффициент преломления, который оказался близким к 1,7.
Казалось бы, простые эксперименты, а сколько в них научных идей, породивших спустя десятилетия целые научно-технические направления. Герц придумал, как сконцентрировать электромагнитные волны. Он разместил свой вибратор в фокусе вогнутого зеркала, изготовленного из цинкового листа в виде параболического цилиндра. Вот вам и прообраз зеркальных антенн, чаши которых сегодня «рассыпаны» по нашей планете.
С помощью двух таких антенн, одна из которых была подсоединена к индукционной катушке, а в фокусе другой находился резонатор, Герц передавал и принимал электромагнитные волны на расстоянии 16 метров. Такой была первая «система» радиосвязи.
А вот другой опыт, в котором прослеживается принцип радиолокации — отражение радиоволн от препятствия. Герц установил рядом передающую и приемную антенны и направил их в одну точку. Там он поместил металлический лист. Электромагнитные волны отражались от листа и принимались приемной антенной. В разрыве приемной рамки проскакивала искра. Стоило убрать металлический лист — и искра пропадала.
Герц провел опыты с поляризацией. Он развернул одну из антенн на 90 градусов, и прием прекратился, сколь близко он ни приближал антенны. Объяснение простое. Горизонтальный вибратор излучал волны с горизонтальной поляризацией и, если приемную рамку поставить вертикально, то горизонтальный вектор напряженности электрического поля не сможет навести в ней электрические заряды.
И еще одно интересное наблюдение сделал ученый. Он заметил, что в некоторых экспериментах искровой разряд в зазоре приемника возникал лишь тогда, когда он освещался светом от искры передатчика. Теперь-то мы знаем, что свет искры содержит ультрафиолетовое излучение. Именно оно способствовало высвобождению электронов из шариков разрядника, тем самым облегчая появление искры в резонаторе. Данное явление называют фотоэлектрическим эффектом. Его часто приводят в качестве подтверждения корпускулярной природы света.
Работал Герц неистово. Не многим дано испытать радость столь продуктивного труда и получить так много результатов, по существу, в одном эксперименте.
В декабре 1888 года вышла его работа «О лучах электрической силы», в которой были изложены результаты его исследований. Этот год считается годом открытия электромагнитных волн и экспериментального подтверждения теории Максвелла.
Напряженная работа, хотя и доставлявшая ему радость, подорвала его и без того слабое здоровье. Сначала отказали глаза — следствие долгого высматривания в полной темноте едва видимых искр. Затем заболели уши, зубы, нос, и наступило общее заражение крови, от которого он умер на пороге нового, 1893 года в возрасте всего лишь 37 лет.
За несколько недель до смерти он писал своей матери: «Если со мной действительно что-то случится, вы не должны огорчаться, но должны мной гордиться и думать, что я принадлежу к тем особо избранным людям, которые жили хотя и не долго, но вместе с тем жили достаточно. Эту судьбу я не выбирал, но я доволен ей и если бы мне предоставили выбор, я, может быть, сам избрал ее».
Вероятно, Герц и не предполагал, сколь триумфальной будет судьба его открытия. Бытует даже мнение, правда, не всеми разделяемое, что он не верил в будущность своего открытия. Как бы там ни было, его труд пробудил всеобщий интерес к идее беспроволочной связи.

ПОПОВ И МАРКОНИ
ВОДА И ЗЕМЛЯ… ВМЕСТО ПРОВОДОВ
И до открытия радиоволн думали об использовании электрических и магнитных явлений для беспроводной связи. «Быстрота, с которой распространяется свет, электричество и магнетизм представлялись всегда как средства, чтобы передавать известия, которые бы требовалось сообщить с возможной поспешностью», — писал в начале XIX столетия русский ученый и дипломат Павел Львович Шиллинг — изобретатель первого практически пригодного электромагнитного телеграфа. Уже в 1835 году телеграфные аппараты Шиллинга были установлены в кабинете Николая I в Зимнем дворце и на квартирах царских приближенных.
Шиллинг же первым в мире применил электрокодовые сигналы. Изобрести их ему помог опыт работы в области шифрования и тайнописи в период дипломатической службы. Даже с современных позиций его коды выглядят довольно эффективными. «Я нашел средство, — писал Шиллинг, — двумя знаками выразить все возможные речи». Нетрудно увидеть в этом предложении двоичную систему счисления, столь широко ныне используемую в ЭВМ, технике связи и обработке сигналов.
Читать дальшеИнтервал:
Закладка: