Людмил Оксанович - Невидимый конфликт
- Название:Невидимый конфликт
- Автор:
- Жанр:
- Издательство:Стройиздат
- Год:1986
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Людмил Оксанович - Невидимый конфликт краткое содержание
В книге автора из НРБ рассматривается важная инженерно-техническая проблема — защита зданий и сооружений от различных воздействий. В научно-популярной форме рассказывается об угрозе, которую представляют землетрясения и ураганы, о свойствах материалов и их способностях выдерживать значительные нагрузки, о деформации железобетонных элементов, о коэффициенте надежности. Большая часть книги посвящена строительным формам и принципам их рационального выбора.
Книга предназначена для широкого круга читателей.
Невидимый конфликт - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Первоначальный проект моста был разработан под руководством главного инженера железнодорожной компании, а строительство поручено всемирно известному Густаву Эйфелю. Согласно договору, Эйфель имел право на изменение проекта, если 60% достигнутой экономии останется за его фирмой. Получилось так, что французы приступили к строительству моста по совершенно новому проекту; мост уже не был арочным, его конструкция представляла собой свободно опертую балку пролетом 42 м и высотой 6 м.
После нескольких лет эксплуатации, после перерыва, связанного с ремонтом и усилением конструкции в связи с появлением более мощных и более тяжелых паровозов, пришел роковой день.
Около 10 ч утра к станции Манхеншайн медленно приближался экспресс Женева—Париж. Так как это был участок, где поезд преодолевал крутой склон, скорость его составляла около 25 км/ч. По свидетельствам очевидцев, когда состав достиг середины моста, тот внезапно рухнул, увлекая за собой и паровозы, и большинство вагонов. Несмотря на то что мост был достаточно велик, а его устои низки, из 12 вагонов в реку упали 7. Позже это было объяснено конструкцией вагонов, которые были очень легкими и слабыми; напирающие сзади вагоны разбивали и сталкивали в реку те, что были перед ними. Восьмой вагон угрожающе повис, остановившись на левом, базельском устое, и затем тоже упал вниз.
Швейцарское правительство поручило вести расследование известным профессорам Ритеру и Тетмайеру. По их единодушному заключению, главная причина катастрофы крылась в средних раскосах фермы, которые проектировались, по всей вероятности, как растянутые. В действительности же при определенной нагрузке они работали на сжатие и их тонкость была причиной внезапной потери устойчивости.
За редкими исключениями, все аварии и катастрофы стальных конструкций связаны с потерей устойчивости отдельными элементами или конструкцией в целом. Опасность потери устойчивости особенно велика потому, что она происходит внезапно. Начальные симптомы чаще всего отсутствуют, а ослабление даже сравнительно не ответственного элемента влечет за собой цепную реакцию огромных масштабов. Все происходит в течение считанных секунд.
Для иллюстрации этого явления мы воспользуемся хрестоматийным примером, представленным на рис. 38(стержень, подвергающийся осевому сжатию). При малой величине сжимающей силы случайное отклонение стержня не является опасным: колеблясь, отклоняясь от своей оси, он быстро восстанавливает первоначальное положение. Как сказал бы специалист, стержень находится в состоянии устойчивого равновесия. Это явление можно сравнить с поведением струны, но там сила является растягивающей и в принципе помогает струне быстрее восстанавливать прямолинейность, а здесь сжимающая сила препятствует восстановлению прежнего положения. Действительно, при определенной величине внешней сжимающей силы отклонившийся от своего первоначального положения стержень уже не возвращается в прежнее положение. Это состояние безразличного равновесия является прелюдией к катастрофе: при увеличении силы стержень внезапно и сильно выгибается. Если материал оказывается хрупким, происходит мгновенное разрушение, если же гибким — необратимое искривление.
Для конструктора особенно важно в каждом конкретном случае знать величину силы, при которой равновесие становится безразличным. Но в любом случае эта величина должна быть больше возможного максимального усилия в стержне. Такая сила называется «критической силой», а соответствующие напряжения — «критическими напряжениями». Критические напряжения меньше расчетного сопротивления материала, и именно в этом заключается коварство искривления: преждевременно выйдет из строя неукрепленный сжатый стержень, и в результате будет ослаблена конструкция. Под сжатым стержнем мы подразумеваем многие конструктивные элементы: стержни фермы, колонны здания, стойки рамы, опоры мостов.
Подобно тому, как в случае элементов, работающих на изгиб, распределение изгибающих моментов зависит от опирания, так и в случае осевого сжатия условия опирания сильно влияют на величину критической силы. На рис. 37хорошо видно, что величина критической силы, а следовательно, и несущая способность элемента тем больше, чем жестче опоры. В самом невыгодном положении оказываются консоли, которые искривляются под действием силы в четыре раза меньшей, чем та, что является критической для закрепленного с двух сторон стержня.
Но все это относится к стержням одинаковой длины и с одинаковым поперечным сечением. Если для элементов, работающих на растяжение, их длина и форма поперечного сечения значения не имеют, то при сжимаемых элементах положение совершенно иное. Трудность заключается в том, что при потере устойчивости элемент, по существу, выгибается; в связи с этим целесообразное поперечное сечение должно иметь такую форму, которая обеспечивала бы большое сопротивление изгибу.
22 января 1913 г. в Нью-Йорке внезапно рухнул во время строительства огромный театр «Орфеум». От внушительного здания остались только стены. Катастрофа произошла в 17 ч 20 мин, т. е. вскоре после того, как 200 рабочих покинули объект. Главной причиной была потеря устойчивости двумя высокими колоннами, поддерживающими покрытие. Как выяснилось при расследовании, проектировщик неправильно учитывал условия опирания колонн. В верхней части, как он считал, колонны должны были упираться в ферму покрытия, чего практически не было. Рассчитывал он также и на включение в работу двух промежуточных жестких опор — на уровне балкона и на уровне авансцены, чего тоже в натуре не было. Катастрофа произошла при нагрузке, которая была значительно меньше эксплуатационной.
Строительная практика преподносит нам много случаев, значительно более сложных, чем модель прямого сжатого стержня. Таким случаем являлись и колонны театра «Орфеум». У сложных систем не один, а несколько элементов могут потерять устойчивость ( рис. 39), соответственно при различной по величине критической силе. Важнейшей из них, разумеется, является наименьшая. Именно поэтому необходимо все потенциально опасные элементы исследовать на потерю устойчивости. Искривление элемента в значительной степени зависит от рабочей диаграммы материала, поэтому при исследовании стальных конструкций используются одни методы, при исследовании деревянных — другие, а при исследовании железобетонных — третьи. Действительность всегда намного сложнее идеализированных условий, в которых иногда рассматривается явление. Проблемы возникают разные даже в случае простого сжатого стержня. Во-первых, он никогда не нагружен точно по оси, чаще всего имеются и поперечные нагрузки, и изгибающий момент. Но даже если они и отсутствуют, какая-нибудь случайная (например, монтажная) внецентричность нагрузки вносит условия, которые становятся причиной будущего искривления элемента. Во-вторых, стержень никогда не бывает идеально прямым, поскольку еще при изготовлении ему придается определенная, хотя и незаметная на глаз кривизна. Некоторый локальный изгиб может произойти и во время транспортировки или монтажа. Не последнюю роль играют и нарушения условий эксплуатации. Известен случай, когда в цех надо было вкатить крупногабаритный груз, а этому всего на несколько миллиметров мешала стойка одной из рам здания. Рабочие ломом попытались «слегка ее отогнуть», и элемент потерял устойчивость, увлекая в катастрофу конструкцию на значительной площади цеха.
Читать дальшеИнтервал:
Закладка: