Сиддхартха Мукерджи - Царь всех болезней. Биография рака
- Название:Царь всех болезней. Биография рака
- Автор:
- Жанр:
- Издательство:АСТ
- Год:2013
- Город:Москва
- ISBN:978-5-17-077569-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сиддхартха Мукерджи - Царь всех болезней. Биография рака краткое содержание
Книга «Царь всех болезней. Биография рака» переведена на 33 языка и удостоена:
— Пулитцеровской премии
— Премии Пен-клуба как лучшее научно-популярное произведение
— Премии за исследования в области онкологии
— Премии «New York Times» как лучшая книга 2010 года
— Премии журнала «Time» как лучшая книга 2010 года. Номинирована на:
— Книжную премию «Los Angeles Times»
— Национальную премию литературных критиков США.
Возрастные ограничения: 16+
Царь всех болезней. Биография рака - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В середине 1940-х годов, через тридцать лет после того как изобрели термин, молекулярная природа гена несколько прояснилась. Функционально ген являлся единицей наследования, переносящей биологический признак от одной клетки к другой или от поколения к поколению. Физически гены существовали в клетках в форме хромосом, а химически — состояли из ДНК, дезоксирибонуклеиновой кислоты.
Однако ген всего лишь переносит информацию. Функциональное, физическое и химическое понимание природы гена взывало и о понимании механизма действия: как именно генетическая информация считывается в клетке? Что именно делают гены — и как они это делают?
В поисках ответа на все эти вопросы Джордж Бидл, студент Томаса Моргана, перешел от излюбленных его наставником плодовых мошек к еще более примитивному организму — слизистой плесени. В сотрудничестве с биохимиком Эдуардом Тейтумом из Стэнфордского университета Бидл открыл, что гены переносят инструкции для синтеза белков — сложных многомерных молекул, являющихся основными рабочими структурами клетки.
Белки, как обнаружили исследователи в 1940-е годы, исполняют множество клеточных функций. Они образуют энзимы — катализаторы, ускоряющие жизненно необходимые для клетки биохимические реакции; служат рецепторами для других белков или иных молекул, отвечающих за перенос сигнала от одной клетки к другой; строят структурные компоненты клетки, например молекулярный скелет, позволяющий клетке занимать в пространстве ту или иную конфигурацию, а также регулируют работу других белков, тем самым создавая в клетке крошечные цепи событий, координирующие ее жизненный цикл.
Бидл и Тейтум обнаружили, что ген «работает», обеспечивая схему для построения белка. Белок — это реализованный ген, механизм, построенный по заданному геном чертежу. Однако белки не строятся напрямую из генов. В конце 1950-х годов Жак Моно и Франсуа Жакоб в Париже, Сидней Бреннер и Мэтью Мезельсон в Калифорнийском технологическом институте и Фрэнсис Крик в Кембридже обнаружили, что для образования белка на основе гена требуется промежуточный шаг — молекула, называющаяся рибонуклеиновой кислотой, или РНК.
РНК — это рабочая копия исходной генетической схемы. Именно через нее ген транслируется в белок. Такая промежуточная копия РНК называется матрицей. Генетическая информация передается от родительской клетки дочерним в результате серии отдельных координированных этапов. Вначале локализованные в хромосомах гены удваиваются при делении и передаются дочерним клеткам, потом ген в виде ДНК преобразуется в копию РНК, а затем эта матрица РНК переводится в белковую форму. Белок, конечный продукт генетической информации, исполняет функции, заложенные в гене.
Процесс передачи внутриклеточной информации можно проиллюстрировать на примере, позаимствованном у Менделя и Моргана. У красноглазых мушек глаза красные из-за того, что у них есть ген, передающий информацию для синтеза красного пигментного белка. Каждый раз, как происходит деление клетки, создается копия этого гена, и потому он переходит от мушки к ее яйцеклеткам, а далее к ее потомкам. В клетках глаз у потомков такой красноглазой мушки этот ген «расшифровывается», то есть переводится в форму матричной РНК, которая, в свою очередь, заставляет клетку синтезировать красный пигментный белок, так что потомок красноглазой мушки тоже становится красноглазым. Любое нарушение в этом информационном потоке способно нарушить передачу признака красноглазости, что приведет к появлению мушек с бесцветными глазами.
Такой однонаправленный поток генетической информации — от ДНК к РНК, от РНК к белку — оказался универсальным для всех живых организмов, от бактерии или плесени до плодовых мушек и людей. В середине 1950-х годов биологи назвали этот принцип центральной догмой молекулярной биологии.
Век изумительных биологических открытий — от обнаружения Менделем генов в 1860 году до выделения Жаком Моно РНК-овых копий генов в конце 1950-х годов — выявил внутренние процессы жизнедеятельности нормальной клетки. Однако это практически не пролило света на жизнедеятельность раковой клетки и на причины возникновения рака — за исключением двух мучительно дразнящих моментов.
Первое такое озарение явилось из наблюдений за людьми. Врачи девятнадцатого века отмечали, что некоторые разновидности рака, например рак молочной железы и яичников, имели тенденцию встречаться в разных поколениях одной семьи. Само по себе это еще не доказывало наследственного характера болезни: ведь в семьях одинаковыми могут быть не только гены, но и привычки, вирусы, еда, подверженность воздействию тех или иных химических веществ и предрасположенность к нервным заболеваниям — все факторы, так или иначе связанные с причинами рака. Однако иногда семейная история бывала настолько яркой, что наследственный (а значит, и генетический) фактор игнорировать попросту не удавалось. В 1872 году Иларио де Гувеа, бразильский офтальмолог из Рио-де-Жанейро, лечил мальчика с редкой разновидностью глазного рака (ретинобластома) хирургическим удалением глаза. Мальчик выжил, вырос и женился на девушке, у которой в семье не встречалось рака. В их браке родилось несколько детей, причем у двух дочерей возникли ретинобластомы на обоих глазах, и обе девочки умерли. Де Гувеа описал этот случай как медицинскую загадку. Он не владел языком генетики, но для последующих наблюдателей этот случай предполагал ярко выраженный наследственный фактор, «живущий» в генах и вызывающий рак. Однако подобные случаи встречались так редко, что гипотезу было трудно проверить экспериментально, и сообщение Гувеа проигнорировали.
Второй раз ученые подобрались к причинам рака почти вплотную — едва не угодив в центральный нервный узел канцерогенеза — через несколько десятилетий после странной бразильской истории. В 1910-е годы Томас Морган, изучая в Колумбийском университете генетику дрозофил, заметил, что среди мушек время от времени появляются мутантные особи. В биологии слово «мутант» означает особь, отличающуюся от нормальных. В огромной стае мух с нормальными крыльями иногда возникает «уродец» с круглыми или искривленными крыльями. Морган заметил это и понял, что мутации являются результатом нарушения в генах и передаются от одного поколения следующим.
Однако что вызывало эти мутации? В 1928 году Герман Джозеф Меллер, один из учеников Моргана, обнаружил, что рентгеновское излучение во много раз повышает уровень мутаций у дрозофил. В опытах же самого Моргана мутации дрозофил происходили спонтанно. Как выяснилось впоследствии, при удвоении ДНК перед делением клетки иной раз происходят сбои и ошибки, вызывающие спонтанные изменения в генах, а тем самым и мутации. Меллер выяснил, что частоту таких изменений можно увеличить. Подвергая дрозофил облучению, он обнаружил, что получает по нескольку сотен мутантных мух за несколько месяцев — больше, чем Морган со своими коллегами получили в ходе двадцатилетней целенаправленной программы разведения дрозофил.
Читать дальшеИнтервал:
Закладка: