Ник Лейн - Лестница жизни. Десять величайших изобретений эволюции

Тут можно читать онлайн Ник Лейн - Лестница жизни. Десять величайших изобретений эволюции - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_popular, издательство Act, corpus, год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Лестница жизни. Десять величайших изобретений эволюции
  • Автор:
  • Жанр:
  • Издательство:
    Act, corpus
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-17-079731-8
  • Рейтинг:
    4.13/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ник Лейн - Лестница жизни. Десять величайших изобретений эволюции краткое содержание

Лестница жизни. Десять величайших изобретений эволюции - описание и краткое содержание, автор Ник Лейн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru


Как возникла жизнь? Откуда взялась ДНК? Почему мы умираем? В последние десятилетия ученые смогли пролить свет на эти и другие вопросы происхождения и организации жизни. Известный английский биохимик реконструирует историю всего живого, описывая лучшие изобретения эволюции, и рассказывает, как каждое из них, начиная с самой жизни и генов и заканчивая сознанием и смертью, преображало природу нашей планеты и даже саму планету.

Лестница жизни. Десять величайших изобретений эволюции - читать онлайн бесплатно полную версию (весь текст целиком)

Лестница жизни. Десять величайших изобретений эволюции - читать книгу онлайн бесплатно, автор Ник Лейн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Второе суждение касается митохондрий - этих “электростанций” эукариотических клеток. Нет никаких сомнений в том, что предки митохондрий были свободноживущими бактериями, и представляется почти столь же несомненным, что последний общий предок всех современных эукариот уже обладал митохондриями. Нет сомнений и в том, что сотни, если не тысячи, генов были перенесены из митохондрий в геном клетки-хозяина и что “прыгающие” гены, которых полно в геномах почти всех эукариот, происходят именно из митохондрий. Ни одно из этих наблюдений не вызывает особых споров, но все вместе они рисуют поразительную картину факторов отбора, которые могли привести к возникновению такого явления, как секс8.

Представьте себе первую эукариотическую клетку - химеру, получившуюся в результате вселения крошечных бактерий внутрь более крупной клетки-хозяина. Всякий раз, когда одна из попавших внутрь бактерий умирает, ее гены оказываются на свободе и дождем сыплются на хромосому клетки-хозяина. Отдельные фрагменты этих генов в случайном порядке встраиваются в хромосому хозяина с помощью обычного для бактерий способа встраивания генов. Одни из этих генов полезные, другие - бесполезные, некоторые соответствуют уже имеющимся. Но некоторые встраиваются прямо в середину собственных генов клетки-хозяина, разделяя их на кусочки. “Прыгающие” гены производят страшные разрушения. Клетка-хозяин никак не может остановить их размножение, и они безнаказанно скачут по всему геному, залезая в хозяйские гены и разрезая хозяйскую кольцевую хромосому на несколько линейных хромосом вроде тех, что имеются теперь у всех эукариот (см. главу 4).

Такие клетки образуют очень изменчивую популяцию, которая быстро эволюционирует. Одни простые мутации приводят к утрате клеточной стенки, другие способствуют совершенствованию бактериального клеточного скелета и его постепенному превращению в более динамичный эукариотический клеточный скелет. В клетках-хозяевах образуются внутренние мембраны и ядро - возможно, за счет беспорядочной передачи генов синтеза липидов из клеток-гостей. Эти достижения не требуют прыжков в неизвестность в надежде на лучшую долю: все перечисленные новшества могут возникать поэтапно, за счет простой передачи генов и незначительных мутаций. Но почти все перемены - это перемены к худшему. На каждое полезное изменение приходятся тысячи вредных. Единственный способ сделать хромосомы, которые не будут нести смерть, единственный способ совмещать удачные открытия и лучшие гены в одной клетке - это секс. Настоящий секс, а не скромный и неуверенный обмен генами, как у бактерий. Только секс позволяет совместить ядерную мембрану одной клетки с динамичным клеточным скелетом другой и механизмом мечения белков третьей, параллельно уничтожая неудачные комбинации. Мейоз, комбинируя гены в случайном порядке, может давать одного победителя на тысячу проигравших (или, лучше сказать, одного выжившего на тысячу погибших), но все же он во много раз лучше, чем клонирование. В изменчивой популяции с высокой частотой мутаций, существующей в условиях сильного давления отбора (частично вызываемого шквальным огнем паразитических “прыгающих” генов), клоны были обречены. Неудивительно, что мы все занимаемся сексом. Без секса мы, эукариоты, давно бы погибли.

Но возникает вопрос: если клоны были обречены, могли секс возникнуть достаточно быстро, чтобы спасти положение? Ответ, как ни странно, - да. Чисто технически секс мог возникнуть очень просто. По сути, половой процесс предполагает всего три вещи: слияние клеток, распределение хромосом по наборам и рекомбинацию. Давайте вкратце рассмотрим их.

Слияние клеток у бактерий более или менее исключено: ему мешает клеточная стенка. Но стоит ее утратить, и вполне может возникнуть обратная проблема: как избежать слияния. Среди простых эукариот, таких как слизевики и грибы, распространено слияние в гигантские клетки с множеством ядер - синцитии. Рыхлые сети таких клеток регулярно возникают на одном из этапов жизненного цикла примитивных эукариот. Паразитам, таким как “прыгающие” гены, как, впрочем, и митохондриям, такое слияние идет на пользу, ведь оно обеспечивает им доступ к новым хозяевам. Было показано, что некоторые “прыгающие” гены сами стимулируют слияние клеток. Учитывая все это, намного более сложной задачей первых эукариот могло стать не обеспечение слияния клеток, а наоборот, его предотвращение. Так что первое необходимое условие секса - слияние клеток - почти наверняка не было проблемой.

Распределение хромосом по наборам на первый взгляд кажется делом куда более трудным. Вспомним, что при мейозе происходит замысловатый “танец” хромосом, который начинается с их неожиданного удвоения, а заканчивается распределением их одинарных наборов по четырем дочерним клеткам. Почему все так сложно? На самом деле не так уж и сложно: это не более чем модификация уже имеющегося способа деления клеток - митоза, который тоже начинается с удвоения хромосом. Митоз, по-видимому, развился из нормального механизма деления бактериальных клеток за счет нескольких довольно простых изменений, последовательность которых попытался восстановить Том Кавалир-Смит. Он также отметил, что для превращения митоза в примитивную разновидность мейоза требовалось только одно ключевое изменение - не завершающееся переваривание белкового “клея” (его научное название - когезин), который связывает получившиеся в результате удвоения хромосомы друг с другом. Вместо того чтобы начать новый клеточный цикл, удваивая свои хромосомы, клетка делает паузу, а после возвращается к распределению хромосом по дочерним клеткам. Оставшийся “клей”, по сути, убеждает клетку, что она уже готова к следующему раунду распределения хромосом, хотя на самом деле она так и не завершила первый раунд.

Итогом оказывается сокращение числа хромосом, которое, как утверждает Кавалир-Смит, поначалу и было главной функцией мейоза. Если первым эукариотическим клеткам было трудно избегать слияния в сети, содержащие множество хромосом (что по-прежнему происходит у слизевиков), то для восстановления простых клеток с одинарным набором хромосом требовалась та или иная форма редукционного деления. Мейоз, возникший в результате неполадок в уже существующем на тот момент митозе, позволил восстанавливать отдельные клетки с помощью механизма, мало чем отличающегося от обычного клеточного деления.

Здесь самое время перейти к третьему необходимому компоненту полового процесса - рекомбинации. Но и его возникновение не было большой проблемой, потому что вся необходимая для этого аппаратура уже имелась у бактерий и была просто унаследована от них эукариотами. Не только аппаратура, но и точный механизм рекомбинации у бактерий и эукариот один и тот же. Бактерии постоянно поглощают гены из окружающей среды (в ходе так называемого горизонтального переноса генов) и встраивают их путем рекомбинации в собственные хромосомы. У первых эукариот та же самая аппаратура, должно быть, осуществляла встраивание в геном клетки-хозяина бактериальных генов, дождем сыпавшихся из митохондрий, что привело к устойчивому росту размеров эукариотического генома. Тибор Веллаи из Университета им. Лоранда Этвеша в Будапеште полагает, что функцией рекомбинации у первых эукариот было, по-видимому, именно встраивание генов в хромосомы. Но задача заставить аппаратуру для рекомбинации выполнять в ходе мейоза менее специальную функцию сводилась, надо полагать, к простой формальности.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ник Лейн читать все книги автора по порядку

Ник Лейн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Лестница жизни. Десять величайших изобретений эволюции отзывы


Отзывы читателей о книге Лестница жизни. Десять величайших изобретений эволюции, автор: Ник Лейн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x