Довид Ласерна - На волне Вселенной. Шрёдингер. Квантовые парадоксы

Тут можно читать онлайн Довид Ласерна - На волне Вселенной. Шрёдингер. Квантовые парадоксы - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_popular, издательство Де Агостини, год 2012. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    На волне Вселенной. Шрёдингер. Квантовые парадоксы
  • Автор:
  • Жанр:
  • Издательство:
    Де Агостини
  • Год:
    2012
  • ISBN:
    2409-0069
  • Рейтинг:
    3.7/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Довид Ласерна - На волне Вселенной. Шрёдингер. Квантовые парадоксы краткое содержание

На волне Вселенной. Шрёдингер. Квантовые парадоксы - описание и краткое содержание, автор Довид Ласерна, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Эрвин Шрёдингер сформулировал знаменитый мысленный эксперимент, чтобы продемонстрировать абсурдность физической интерпретации квантовой теории, за которую выступали такие его современники, как Нильс Бор и Вернер Гейзенберг. Кот Шрёдингера, находящийся между жизнью и смертью, ждет наблюдателя, который решит его судьбу. Этот яркий образ сразу стал символом квантовой механики, которая противоречит интуиции точно так же, как не поддается осмыслению и ситуация с котом, одновременно живым и мертвым. Шрёдингер проиграл эту битву, но его имя навсегда внесено золотыми буквами в историю науки благодаря волновому уравнению — главному инструменту для описания физического мира в атомном масштабе.

Прим. OCR: Врезки текста выделены жирным шрифтом. Символ "корень квадратный" заменен в тексте SQRT().

На волне Вселенной. Шрёдингер. Квантовые парадоксы - читать онлайн бесплатно полную версию (весь текст целиком)

На волне Вселенной. Шрёдингер. Квантовые парадоксы - читать книгу онлайн бесплатно, автор Довид Ласерна
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Для восстановления порядка в этих экспериментальных джунглях следовало вначале усугубить неясность. Следующий шаг был сделан французским аристократом, который посмотрел на электроны сквозь призму квантования. Если, несмотря то что свет — это волна, он может вести себя как частица (фотон) в атомной среде, ведут ли себя частицы, известные своими корпускулярными свойствами, как волны?

Де Бройль и вызов Шрёдингеру

Морис де Бройль, шестой герцог Брольи, воплотил мечту всех физиков-экспериментаторов: он создал идеальную лабораторию, абсолютно не стесняя себя в средствах. Принадлежность к аристократическому кругу позволила ему использовать для этого семейный особняк на улице Шатобриан, в самом центре Парижа. Герцог заполнил шкафы эпохи Людовика XV множеством электрических приборов, слуг сменил на целый батальон помощников и задумал комплексную программу исследований рентгеновского излучения и фотоэлектрического эффекта. Научная страсть де Бройля в конечном итоге заставила его младшего брата, Луи, свернуть с гуманитарной дорожки: тот забросил изучение средневековой истории ради карьеры физика. По словам Луи, Морис «признавал излучения, формируемые волнами и частицами, но не имел четкого представления об этом, не будучи теоретиком». За разъяснения взялся сам Луи, поскольку он глубоко изучил природу электромагнитного излучения на военной службе в годы Первой мировой войны, а затем работал радистом на Эйфелевой башне.

Возможно, именно железная конструкция башни привела Мориса к открытию: «После глубоких размышлений в одиночестве в 1923 году меня внезапно осенило: открытие, сделанное в 1905 году Эйнштейном, должно было распространяться на все материальные частицы, в том числе на электроны». Другими словами, если свет может обладать корпускулярными свойствами, то электроны должны также проявлять свойства волны. Де Бройль предложил тогда, что такая частица, как электрон, блуждающий свободно в пространстве, будет связана с волной, длина которой X = h/p, где р — физическая величина, названная импульсом и определяемая в целом как произведение массы частицы на ее скорость (р =m • v).

Получив диплом Французской академии наук, Морис де Бройль опубликовал в сентябре 1923 года две небольшие работы, содержавшие плоды его размышлений. К следующему году на основе этих тезисов герцог написал докторскую диссертацию. Его научный руководитель Поль Ланжевен, как и другие ученые, находился в некотором замешательстве — работа де Бройля казалась ему столь же изобретательной, сколь и маловероятной, поэтому он подкинул ее Эйнштейну, который тут же пришел в восторг. Он посчитал гипотезу де Бройля не только смелой, но и перспективной и заявил: «Я вижу здесь робкий луч света в одной из наиболее темных физических загадок».

Сам де Бройль искал способы подтвердить свою догадку. Он заметил, что если электроны с длиной волны, связанной с размером, равным межатомному расстоянию твердого вещества (около 10 -10м), будут спроецированы на стекло, то с другой стороны появится интерференционная картина. Интерференция — одно из явлений, наиболее ясно раскрывающих волновую природу любого объекта (подробнее см. статью «Интерференция волн», стр. 72-73).

Американцы Клинтон Дэвиссон и Лестер Джермер осуществили подобный опыт в лаборатории Бэлла, а англичане Александр Рид и Джордж Томсон проделали то же самое в Абердинском университете. Обе группы ученых обнаружили, что какими бы ни были электроны, они вели себя как волны, проникая сквозь монокристалл никеля или тончайшую металлическую пластину.

Если бы электроны вели себя как частицы, то, достигая атомарной решетки твердого тела, они бы отскочили от нее в разных направлениях, словно крошечные мячики. Но регистрируя рассеянные электроны, ученые получили широкую дисперсию волнового профиля (см. рисунок).

Эксперименты позволили сделать безапелляционный вывод: электронам свойственно поведение, как у волны. Однако прорыв де Бройля, как это все чаще случалось с тем, что касалось квантов, больше ставил вопросов, чем давал ответов. Из чего состояли эти волны? Каким образом их интерпретировать? Как что-нибудь могло одновременно иметь две столь противоречивые природы, как волна и частица? Частицы концентрируются вокруг точек, а волны стремятся к тому, чтобы рассеиваться во все концы пространства, словно круги на водной глади от камня, брошенного в пруд. Уравнение де Бройля λ = h/p соединяло противоположные миры: λ является величиной волнообразного типа, р — корпускулярного. Материальные волны, в отличие от света, не связаны ни с каким полем, ни электрическим, ни магнитным, и могут проходить через вакуум при любой скорости, отличной от скорости света. Мяч, пересекая поле для гольфа на скорости 30 м/с, имеет длину волны λ = 1,9 х 10 -34м. Постоянная Планка h сказывается на повседневной жизни, но все же: как мяч может иметь столь незначительную и даже невообразимо малую длину волны?

Корпускулярные электроны Волновые электроны На рисунке показаны два - фото 31

Корпускулярные электроны

Волновые электроны На рисунке показаны два возможных исхода опыта Дэвиссона и - фото 32

Волновые электроны

На рисунке показаны два возможных исхода опыта Дэвиссона и Джермера в соответствии с поведением электронов.

Если бы электроны были частицами, то они сосредоточились бы на детекторе, а если волнами — то были бы распределены по ряду детекторов, при этом количество частиц на каждом подчинялось бы волновой схеме. В итоге был получен второй результат.

Де Бройль предположил, что эти волны направляют частицы, и хотя это заявление в целом соответствовало интуиции, оно не уточняло, какие отношения у волны с электроном. Например, известно, что частица, подвергаясь воздействию на нее (при столкновении с другой частицей, влиянии магнита и так далее), изменяет свою скорость и, следовательно, свою длину волны. Но каков механизм этого? Ни одно уравнение не позволяло рассчитать динамику волн, связанных с электронами.

Все эти вопросы держали в напряжении голландского физика Петера Дебая, который в середине октября 1925 года бросил Шрёдингеру в Цюрихе: «Прямо сейчас вы не работаете ни над чем важным. Я не понимаю всей этой суеты вокруг де Бройля. Почитайте его. Посмотрим, выйдет ли интересный разговор». Шрёдингер изучил работы герцога и даже представил их 7 декабря на конференции. Однако присутствовавший в зале Дебай не был удовлетворен. Он напомнил Шрёдингеру: чтобы корректно говорить о волне, когда речь идет о вибрации гитарной струны, колебаниях давления молекул воздуха (звук) или электромагнитном излучении, необходимо волновое уравнение. И прежде чем покинуть конференц-зал, он потребовал: «Найдите это уравнение!»

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Довид Ласерна читать все книги автора по порядку

Довид Ласерна - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




На волне Вселенной. Шрёдингер. Квантовые парадоксы отзывы


Отзывы читателей о книге На волне Вселенной. Шрёдингер. Квантовые парадоксы, автор: Довид Ласерна. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x