Виктор Стенджер - Бог и Мультивселенная. Расширенное понятие космоса
- Название:Бог и Мультивселенная. Расширенное понятие космоса
- Автор:
- Жанр:
- Издательство:Питер
- Год:2016
- Город:СПб
- ISBN:978-5-496-01765-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виктор Стенджер - Бог и Мультивселенная. Расширенное понятие космоса краткое содержание
На наших глазах фантастика становится реальностью. Новейшие исследования позволяют предположить, что наблюдаемая часть Вселенной — лишь крошечный участок несравненно более обширной и грандиозной Мультивселенной. В этой книге увлекательно и доступно рассказано о формировании современной картины мира, о том, как решительно и болезненно она пересматривалась с развитием науки, о том, какие невероятные горизонты открываются перед космологией, стоит только выйти из плоскости, заданной теорией Большого взрыва и традиционной астрофизикой.
Последняя работа Виктора Стенджера, в которой он фактически подводит итоги своей научной деятельности и жизни, убедительно доказывает, что Мультивселенная могла возникнуть естественным путем, без вмешательства каких-либо высших сил.
Бог и Мультивселенная. Расширенное понятие космоса - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Чтобы упростить себе выбор, мы можем воспользоваться бритвой Оккама, которая отдает предпочтение самой простой из гипотез. На первый взгляд может показаться, что одна Вселенная экономнее, чем множественные вселенные. Однако бритва Оккама касается не количества объектов в теории, а количества гипотез. Атомная теория материи умножила количество объектов, с которыми приходится работать физикам, в триллионы триллионов раз. Тем не менее она оказалась проще и мощнее, чем макроскопическая термодинамика, которая использовалась до нее и может быть полностью выведена из атомной теории. Аналогично, поскольку современная эмпирическая наука указывает на существование множественных вселенных, нам, чтобы обосновать существование всего одной Вселенной, потребуется дополнительная гипотеза, которая не следует из данных. Таким образом, именно гипотеза о единственной Вселенной нарушает принцип бритвы Оккама.
В другом возражении многие неверующие ученые присоединились к теистам: они считают, что Мультивселенная ненаучна, поскольку у нас нет возможности наблюдать вселенную вне нашей. На самом деле это неправда. Мультивселенная — это вполне научная гипотеза, поскольку, судя по всему, она неизбежно вытекает из вечной инфляции. Эта модель ранней Вселенной основана на имеющихся эмпирических данных; мы обсудим ее в следующем разделе.
Наши теории часто содержат не поддающиеся наблюдению вещи, такие как кварки и черные дыры. И, как мы вскоре увидим, эмпирическое свидетельство существования других вселенных вовсе не находится за гранью возможного. Любое явление, которое вписывается в жизнеспособную гипотезу и в принципе обнаружимо, полноправно считается частью науки.
Сама идея о том, что может существовать много вселенных, имеет настолько ошеломляющие последствия, что за последние 30 лет или более ей была посвящена масса литературы в области науки, философии и теологии {340} 340 Например: Carr Bernard ed. Universe orMultiverse? — Cambridge: Cambridge University Press, 2007; Gribbin John. In Search of the Multiverse: Parallel Worlds, Hidden Dimensions, and the Ultimate Quest for the Frontiers of Reality. — Hoboken, NJ: Wiley, 2010; Manly Steven L. Visions ofthe Multiverse. — Pompton Plains, NJ: New Page Books, 2011.
. Я не буду пытаться охватить все, что было написано по этому вопросу, а ограничусь лишь самыми свежими выводами, которые мы можем сделать из наиболее простых допущений.
Вечная инфляция
В 1983 году космолог Александр Виленкин с некоторым трепетом предложил гипотезу так называемой вечной инфляции {341} 341 Vilenkin Alexander. Birth of Inflationary Universes // Physical Review, D 27,1983. № 12:2848–2855. See also, Many Worlds in One: The Search for Other Universes. — New York: Hill and Wang, 2006.
. Согласно теории вечной инфляции, если расширение начинается, оно никогда не заканчивается, и все это время создаются новые вселенные. В 1986 году Андрей Линде развил эту идею и показал, как может быть так, что Вселенная неограниченно воспроизводит себя и «может не иметь ни начала, ни конца» {342} 342 Linde Andrei D. Eternally Existing Self-Reproducing Chaotic Inflationary Universe // Physics Letters, В 175, 1986. — №4: 395–400.
.
Согласно Виленкину и Линде, вечная инфляция приводит к постоянному появлению вселенных внутри других вселенных с образованием фракталоподобной структуры {343} 343 Linde Andrei. The Self-Reproducing Inflationary Universe // Scientific American 271,1994. — №5:48–55.
. По сути, в то время, как пузырь вселенной экспоненциально расширяется до значительно большего размера, другие пузыри могут зарождаться в постоянно растущем пространстве де Ситтера, окружающем исходный пузырь. Этот процесс продолжается вечно вплоть до далекого будущего.
В модели, предложенной Энтони Агирре из Института перспективных исследований в Принстоне и Стивеном Граттоном из Принстонского университета, зародышевые пузырьки представляют собой бивселенные, подобные описанным выше, с противоположными друг другу стрелами времени {344} 344 Aguirre Anthony N. and Gratton Steven. Steady-State Eternal Inflation; Aguirre Anthony N. and Gratton Steven. Inflation without a Beginning.
.
Как насчет прошлого? Уильям Лейн Крейг продолжил попытки найти подтверждения творению в космологии, отрицая, что время бесконечно продолжается в прошлое так же, как и в будущее. Наконец признав, что наша Вселенная может быть не единственной, он говорит: «Даже если наша Вселенная — это всего лишь крохотная часть так называемой Мультивселенной, состоящей из множества вселенных, все равно из теоремы БГВ следует, что у самой Мультивселенной должно быть абсолютное начало» {345} 345 Craig William Lane. Opening Speech.
.
Как мы уже узнали, из теоремы БГВ следует только то, что у инфляции было начало. Она ничего не говорит о начале Мультивселенной. Более того, в случае бивселенной две вселенные имеют общее начало и расширяются в противоположных временных направлениях. В картине вечной инфляции новые вселенные постоянно формируются в каждом из этих расширяющихся пространств с противоположными стрелами времени.
Я думаю, Крейг может заявить без каких-либо доводов и доказательств, что вся эта штука, которую мы можем назвать Большой штукой [26] Непереводимая игра слов: в оригинале Big Shebang — по аналогии с Big Bang — «Большой взрыв». — Примеч. пер.
, была сотворена Богом. Но давайте отложим обсуждение теологических выводов на закуску и сначала рассмотрим некоторые из оставшихся научных вопросов.
Разрешение проблемы энтропии
В своей книге «От вечности до наших дней» Шон Кэрролл рассматривает популярный вопрос: почему энтропия Вселенной вначале была такой низкой? Этот вопрос называется проблемой энтропии. Вообще, я бы упрощенно ответил, что она была низкой вначале, потому что именно так мы определяем начало — как момент, когда энтропия была минимальной. На самом же деле, как объясняет Кэрролл, вопрос заключается в том, почему это крайне маловероятное состояние в принципе возникло в какое бы то ни было время. Если Вселенная появилась благодаря случайным процессам, то она должна была начаться с гораздо большей энтропией. Это все равно что бросить миллиард игральных костей и получить все шестерки.
Разумеется, если Мультивселенная безгранична, то все возможные комбинации выпадут неограниченное число раз. Но этот ответ слишком прост и столь же неинформативен, как если бы мы сказали, что это сделал Бог.
После внимательного рассмотрения всех этих вариантов Кэрролл показывает, что вечная Мультивселенная предоставляет убедительное решение проблемы энтропии. Он задает ключевой вопрос: как должна выглядеть Вселенная, если она абсолютно естественна? Его ответ: «Естественная Вселенная — которая бы не полагалась на тонко настроенные контрольные условия низкой энтропии в любой точке в прошлом, настоящем или будущем — по сути, представляла бы собой пустое пространство» {346} 346 Carroll Sean M. From Eternity to Here: The Quest for the Ultimate Theory of Time. — New York: Dutton, 2010. — P. 355.
.
Интервал:
Закладка: