Luis Alvarez - Самая сложная задача в мире. Ферма. Великая теорема Ферма
- Название:Самая сложная задача в мире. Ферма. Великая теорема Ферма
- Автор:
- Жанр:
- Издательство:Де Агостини
- Год:2015
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Luis Alvarez - Самая сложная задача в мире. Ферма. Великая теорема Ферма краткое содержание
Пьер де Ферма — исключительная личность в истории науки: будучи адвокатом по профессии, он посвящал математике только свободные часы. Его научное наследие по большей части сохранилось в виде писем, которыми он обменивался с другими светилами своего времени, такими как Марен Мерсенн, Блез Паскаль или Рене Декарт. Гениальность этого французского ученого, несмотря на его дилетантизм, проявилась в разнообразных областях: в теории вероятностей, математическом анализе и особенно в теории чисел, в рамках которой он выдвинул гипотезу, озадачившую самых значительных математиков на более чем три века. Историю решения задачи, известной как Великая теорема Ферма, можно назвать одной из самых красивых легенд научного мира.
Самая сложная задача в мире. Ферма. Великая теорема Ферма - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Существует много других результатов, зависящих от малой теоремы. Один из самых известных — то, что мы все замечали: количество знаков после запятой в рациональном числе повторяется периодически, если в данном рациональном числе, выраженном несократимой дробью, знаменатель — простое число р, отличное от 2 и 5 (которые являются простыми множителями 10). Именно поэтому 1/3 - 0,33333..., а 1/7 - - 0,142857142857..., но 1/5 - 0,2, без периодического повторения. Предыдущие рассуждения служат для того, чтобы понять: малая теорема — один из самых важных результатов в теории чисел.
Вот основная теорема, выполняющаяся в каждой конечной группе, называемая обычно малой теоремой Ферма, поскольку Ферма был первым, кто доказал особый ее случай.
Замечание немецкого математика Курта Гензеля в своей книге "Теория чисел" (Zablentheorie, 1913).
Конечно же, Ферма, верный своей традиции, не оставил ни одного доказательства. Теорема была доказана Эйлером, который не знал, что Лейбниц несколькими годами ранее уже доказал ее, хотя результат был опубликован только в XIX веке.
В доказательстве Лейбница используются математические методы, известные Ферма, поэтому возможно, что доказательство Ферма, если оно существовало, было сделано подобным способом.
В любом случае, Ферма явно не догадывался о ее последующем применении. Для него теорема была инструментом для теста простоты некоторых чисел, таких как 2 n- 1. Она была одним из его сокращенных путей, используемых с целью избежать решета Эратосфена. Например, благодаря своей малой теореме Ферма смог подступиться к числам вида а n- 1 при а > 2, которые никогда не являются простыми, сведя кандидатов в их простые делители к меньшему множеству. Как легко увидеть, эти числа — обобщение чисел Мерсенна. Кроме того, малая теорема позволила Ферма таким же образом подойти к числам а n+ 1, которые, как он утверждал, являются простыми, если a четное, а n имеет вид 2 m. Именно в ходе этого исследования математик открыл так называемые простые числа Ферма, которые соответствуют этим двум условиям и еще одному — тому, что число m вида 2 2p+1 простое, если р простое.
Но в данном случае интуиция подвела Ферма. Эйлер нашел контрпример при p - 5. Итоговое число делится на 641. Ферма осознавал, что не может доказать этот результат, и говорил о своем разочаровании в течение многих лет; в 1659 году он изложил доказательство своему другу Каркави, но с учетом контрпримера Эйлера, оно, даже если и существовало, явно было ошибочным. В любом случае ясно, что малая теорема позволяла Ферма исключить из своих вычислений любое множество простых чисел — кандидатов в делители чисел некоего вида, что облегчало тесты простоты указанных чисел. Однако, к своему большому разочарованию, он никогда не добился того, к чему стремился, — вывести теорему, позволяющую избавиться от всех простых чисел, которые можно исключить для указанных типов чисел.
Сегодня не существует по-настоящему эффективного и надежного метода нахождения простых чисел произвольного размера; нет формулы вроде той, что нашел Евклид для четных совершенных чисел. В большинстве методов нахождения простых чисел требуется знать все простые числа до некоего предварительного числа либо знать, являются ли числа, соседние с кандидатом на простое число, разложимыми на множители. Следовательно, тесты простоты крайне важны: сначала ищут кандидата на простое число, а потом проверяют, является ли оно таковым.
Казалось, что к концу 1640 года Ферма потерял интерес к суммам собственных делителей. Его следующие исследования по теории чисел напрямую связаны с Великой теоремой.
Рациональные прямоугольные треугольники — это называемые пифагоровыми тройки рациональных чисел х,у и z, которые выполняют теорему Пифагора: х 2+ у 2= z 2.
Такие тройки очень древние и встречаются уже в Вавилоне и Египте. Но Евклид доказал, что — при заданных двух рациональных числах p и q - r = р 2+ q 2, x = р 2- q 2и y = 2pq - это пифагорова тройка. Из чего непосредственно следует, что количество пифагоровых троек бесконечно, поскольку количество рациональных чисел бесконечно.
Диофант посвятил Книгу VI своей "Арифметики" решению задач, связанных с данным типом треугольников, как он это обычно и делал: рассматривая их в виде отдельных случаев. Его метод решения предполагал составление уравнения или системы уравнений. Проблема была в том, что иногда в результате получалось рациональное отрицательное число, и это не имело смысла, поскольку ни у одного треугольника нет сторон отрицательной длины. В других случаях метод ученого не работал, поскольку некоторые условия, необходимые для успеха, не выполнялись: например, в итоговых уравнениях коэффициент х 2или константа должны были быть квадратом. Диофант выбирал свои задачи осторожно, чтобы они соответствовали таким условиям и решение всегда было положительным; "хитрость" заключалась в том, чтобы ставить только задачи, решаемые с помощью предложенного метода.
В 1621 году во Франции Клод Гаспар Баше де Мезириак издал работу Диофанта. Именно благодаря этому изданию Ферма познакомился с Диофантом, и на его полях он сделал свою знаменитую запись Великой теоремы.
Ферма заинтересовался прямоугольными треугольниками, внеся важные коррективы: во-первых, он ограничился изучением треугольников, стороны которых были выражены только натуральными числами. Во-вторых, вместо того чтобы решать частные случаи с особыми числами, Ферма взял метод решения Диофанта и сформулировал его в общем виде. В то время как Диофант был ограничен языком словесной алгебры, Ферма, следуя Виету, уже пользовался символической алгеброй, которая позволяла ему большую возможность абстрагирования. При таких обстоятельствах Френикль написал Ферма в 1641 году и предложил ему задачу: найти треугольник, в котором выполнялось бы следующее уравнение: (x - y) 2= y + z 2. Задачи Диофанта неизменно приводят к уравнениям такого типа.
Ферма не без усилий решил задачу, но через два года у него уже был метод. Он предложил Пьеру Брюлару де Сен-Мартену три подобные задачи, чтобы пробудить его интерес к теории чисел. Брюлар и сам Френикль отреагировали с возмущением. По их мнению, его задачи не имели решения. Они подумали, что Ферма пытается высмеять их. Но тулузец уверил (через Мерсенна), что решение существует, не открывая его. Однако под давлением Мерсенна через некоторое время он предал гласности эти результаты.
Вы спрашиваете меня, является ли число 100 895 598 169 простым или [...] составным. На этот вопрос отвечаю Вам, что это число составное и получается из произведения 898 423 и 112 303, которые являются простыми.
Читать дальшеИнтервал:
Закладка: