Феликс Зигель - Астрономы наблюдают
- Название:Астрономы наблюдают
- Автор:
- Жанр:
- Издательство:Наука
- Год:1985
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Феликс Зигель - Астрономы наблюдают краткое содержание
Автор в доступной, увлекательной форме рассказывает о том, как астрономы наблюдают небо (с древности до наших дней). Читатель познакомится с главными инструментами астрономов в прошлом и настоящем. Он узнает о радиотелескопах и новых технических средствах исследования невидимых космических излучений. В книге уделено внимание жизнеописанию великих астрономов-наблюдателей — творцов астрономической техники. Новое издание книги дополнено рассказом о перспективах наземной астрономии.
Для самого широкого круга читателей, интересующихся астрономией и ее историей.
Астрономы наблюдают - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Конечно, беспредельно увеличивать экспозицию нельзя. Наступает момент, когда фон ночного неба, кажущийся темным, а на самом деле слабосветящийся, равномерно «затемнит» негатив и тем самым завуалирует изображения звезд. Предельная экспозиция для нормальных астрографов близка к 17 часам, но для короткофокусных камер она гораздо короче.
Моментальность — это второе достоинство фотографии. На снимке можно зафиксировать явления, совершающиеся так быстро, что глаз не успевает их как следует рассмотреть. Таковы, например, метеоры, детали которых видны лишь на фотографиях.
На снимках неба иногда неожиданно обнаруживают незнакомую комету, спутник, астероид или новую звезду. По фотографиям изучают колебания блеска звезд, их смещение на небосводе (из-за собственного движения в пространстве), изменения в форме солнечной короны. Во всех этих случаях проявляется документальность фотографии и не случайно поэтому на многих обсерваториях созданы «стеклянные библиотеки» из многих тысяч негативов. В таких библиотеках, существующих уже много десятков лет, светом записаны эпизоды истории мироздания.
Когда наблюдаешь визуально Луну или участок звездного неба, трудно сосредоточить внимание глаза сразу на всех деталях. Особенно это относится к таким кратковременным событиям, как появление солнечной короны во время полного солнечного затмения. Фотопластинка этим недостатком не обладает. Она бесстрастно фиксирует всю панораму и потому это ее свойство называется панорамностью.
К преимуществам фотографии надо добавить и объективность, тогда как всякие визуальные наблюдения, как правило, отягощены личными ошибками наблюдателя (например, в его рисунках поверхности планеты).
Мы уже отмечали, что цветочувствительность фотопластинок значительно шире, чем у человеческого глаза. Подбирая сорта эмульсии или применяя разнообразные светофильтры, удается фотографировать то, что глазу просто недоступно. Тем самым значительно расширяются возможности изучения Вселенной.
Пусть не подумает читатель, что наши глаза во всем плохи. Кое в чем и они имеют преимущества над фотопластинками. Так, например, при фотосъемке планет быстрые движения воздуха «замывают» изображения, тогда как глаз в отдельные моменты спокойствия атмосферы видит на диске планеты множество неуловимых для пластинки деталей. Трудно фотографировать слабые телеметеоры, неожиданно появляющиеся в поле зрения телескопа. И здесь глаз фиксирует то, что недоступно пластинке. Дефекты пластинок иногда скрывают очень интересные объекты.
И все-таки визуальные наблюдения, как правило, отошли в прошлое. Фотография в современных обсерваториях применяется практически всюду и везде.
Прирученная радуга
Когда Солнце находится над горизонтом примерно на высоте 17°, в противоположной части небосвода при некоторых условиях (обычно на фоне дождевой тучи) возникает разноцветная искривленная прозрачная полоса, именуемая радугой. Образуется она в результате дисперсии, т. е. разложения белого солнечного света на составные цвета при прохождении этого света сквозь мельчайшие водяные капельки. Много веков люди любовались радугой, не подозревая, что дисперсия света может стать ключом к познанию физической природы небесных тел.
Впервые искусственную радугу с научной целью получил в 1665 году Исаак Ньютон. В темную комнату сквозь небольшое отверстие в затемненном оконном стекле Ньютон пропустил ослепительно белый солнечный луч. Когда на пути этого луча Ньютон поставил трехгранную стеклянную призму, на белой стене появилась разноцветная полоска — солнечный спектр. Причина ясна — призма преломляет лучи разного цвета (то есть разной длины волны) по-разному. Чем меньше длина волны светового луча, тем больше его коэффициент преломления. Поэтому среди видимых глазом лучей наибольшее преломление в призме испытывают фиолетовые лучи, а наименьшее — красные. Опыт Ньютона впервые доказал, что белый солнечный луч представляет собой смешение разнообразных цветовых лучей — фиолетового, синего, голубого, зеленого, желтого, оранжевого и красного.
Ньютон таким образом объяснил хроматическую аберрацию линз и неустранимость этих аберраций заставила его изобрести рефлектор. Но великий английский ученый рассматривал дисперсию света как досадную помеху и он не видел, как можно употребить это явление на пользу астрономии.
В 1802 году соотечественник Ньютона Волластон заметил в солнечном спектре несколько темных линий. Он не понял их происхождения и посчитал, что загадочные линии представляют собой простые границы между цветами спектра.
Двенадцать лет спустя Фраунгофер открыл в спектре Солнца около 600 темных линий, с тех пор носящих его имя. Более 300 из них он зарисовал, некоторые обозначил латинскими буквами и эти обозначения Фраунгофера сохранились до сих пор. Но, как и его предшественники, Фраунгофер не знал, какое отношение все эти линии имеют к химическому составу Солнца.
Как не раз бывало в истории человечества, появились самонадеянные пророки, заявлявшие, что человечество никогда не узнает, из чего состоят небесные тела. Так, в 1842 году знаменитый французский философ, основоположник позитивизма, Огюст Конт писал: «Никогда и ни в коем случае нам не удастся изучить химический состав небесных тел». Но наука оказалась сильнее этих пессимистических пророчеств.
В 1859 году немецкий физик Кирхгоф открыл законы, положившие начало спектральному анализу. К этому времени уже был изобретен спектроскоп — простейший спектральный прибор. Спектроскоп состоит из двух трубок и трехгранной призмы, помещенной между ними. Первая из них, обращенная к объекту, называется коллиматором. На одном ее конце имеется узкая щель, а на другом — собирательная линза, причем щель находится в фокусе линзы.
По законам оптики свет, прошедший через коллиматор, выходит из него параллельным пучком и падает на призму, которая разлагает его в спектр. Этот спектр рассматривается затем во вторую трубку, которая, по существу, является обычной зрительной трубой.
Нетрудно сообразить, что спектр, в сущности, есть совокупность разноцветных изображений щели коллиматора. Для «растягивания» спектра в длину иногда вместо одной призмы употребляют несколько.

Если зрительную трубу в спектроскопе заменить фотокамерой, получится спектрограф (рис. 32). С его помощью можно получать фотографии спектров небесных светил, называемые спектрограммами. Со времен Кирхгофа различают три основных типа спектров:
Читать дальшеИнтервал:
Закладка: