Феликс Зигель - Астрономы наблюдают
- Название:Астрономы наблюдают
- Автор:
- Жанр:
- Издательство:Наука
- Год:1985
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Феликс Зигель - Астрономы наблюдают краткое содержание
Автор в доступной, увлекательной форме рассказывает о том, как астрономы наблюдают небо (с древности до наших дней). Читатель познакомится с главными инструментами астрономов в прошлом и настоящем. Он узнает о радиотелескопах и новых технических средствах исследования невидимых космических излучений. В книге уделено внимание жизнеописанию великих астрономов-наблюдателей — творцов астрономической техники. Новое издание книги дополнено рассказом о перспективах наземной астрономии.
Для самого широкого круга читателей, интересующихся астрономией и ее историей.
Астрономы наблюдают - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Очень трудно построить хороший нейтринный телескоп. И не потому лишь, что не видно, из чего сделать нейтринные линзы и как уменьшить их до практически реальных размеров. Нейтринные пучки только при очень больших энергиях, так сказать, чувствительны к направлению, только в этом случае «выбитые» нейтрино частицы вещества сохраняют первоначальное направление полета, а значит, можно узнать, откуда прилетело нейтрино. Есть, конечно, и другие трудности, заставляющие некоторых ученых сегодня скептически относиться к нейтринным телескопам. Но будущее может таить в себе такие возможности, о которых мы сегодня и не подозреваем.
И если когда-нибудь все-таки будут построены сверхчувствительные нейтринные телескопы, с их помощью в звездном мире откроют много необычного. Среди прочего станет возможным прогноз вспышек сверхновых звезд. Оказывается, задолго до того как вспыхнуть в видимом свете, кандидаты в сверхновые звезды начинают интенсивно излучать все более и более мощные потоки нейтрино. А разве не будоражит нашу фантазию такая возможность, как познание антимиров из антивещества, что с помощью нейтрино могло бы быть сильно облегчено? Право же, обидно сознавать, что вокруг нас (и даже в нас самих!) движутся мириады частиц, в которых заложена ценнейшая информация о космосе, а мы эту информацию пока не умеем извлекать и использовать!
Веками астрономы стремились подняться над Землей, в верхние, прозрачные и спокойные слои атмосферы. Они строили обсерватории на высоких плоскогорьях, поднимались на вершины гор, а в последние годы им удалось даже вывести обсерватории на космические орбиты. И теперь, когда, казалось, цель достигнута, астрономы подумывают о том, чтобы зарыться поглубже в Землю и оттуда, сквозь всю толщу земного шара, изучать космос!
Парадоксально? Конечно. Но в этой внешней противоречивости действий отражается внутренняя противоречивость науки, в конечном счете и обеспечивающая ее прогресс. А средства изучения космоса и должны быть многообразны, как многообразна сама Вселенная — видимая и невидимая.
ЗААТМОСФЕРНЫЕ ОБСЕРВАТОРИИ
«Только с момента применения реактивных
приборов начнется новая великая эра в астрономии:
эра пристального изучения неба».
К. Э. ЦиолковскийВсе выше и выше!
Еще в прошлом веке астрономы старались забраться как можно выше, чтобы уменьшить до минимума вредное влияние атмосферы. Напомним, что воздушная оболочка нашей планеты создает существенные помехи при астрономических наблюдениях. Постоянное движение воздушных масс размывает, портит изображения небесных тел и даже в самые небольшие телескопы хорошо видно струйчатое течение воздуха. Из-за этого в наземных условиях приходится применять ограниченные увеличения (как правило, не более чем в несколько сотен раз).
Не в полную силу работают телескопы и по другой причине. Из-за непрозрачности атмосферы почти ко всем электромагнитным излучениям с наземных обсерваторий мы исследуем Вселенную сквозь две узкие «щели» — видимого, света и «радиоокно».
На вершинах гор воздух чище, спокойнее и если к тому же для горной обсерватории выбрано место с хорошим астроклиматом (в частности, с большим количеством ясных дней в году), условия для изучения Вселенной становятся вполне благоприятными. По этой причине еще с конца прошлого века все крупные астрономические обсерватории сооружаются на вершинах гор или на высоких плоскогорьях.
Но так уж устроен человек, что он не способен навсегда удовлетвориться достигнутым. Еще более века назад, в 1870 году французский исследователь Солнца Ж. Жансен, основавший обсерваторию на вершине Монблана, продолжил исследования дневного светила с воздушного шара. Так впервые астрономы оторвались от поверхности Земли и двинулись навстречу звездам.
Примеру Жансена последовали и другие ученые, в частности, Д. И. Менделеев, наблюдавший солнечное затмение с воздушного шара. Астрономы, поднявшись над облаками, фотографировали поверхность Солнца, его спектр. Позже с воздушных шаров наблюдали кометы и метеоры.
Когда в обиход прочно вошли самолеты, их также стали использовать для астрономических целей. Особенно распространенными стали полеты по ходу лунной тени во время полных солнечных затмений. Спешащий за тенью самолет продлевал для наблюдателей на его борту полную фазу затмения, в обычных условиях не превышающую семи минут.
После второй мировой войны «баллонная астрономия» (стал употребляться и такой термин) превратилась в одно из перспективных средств изучения Вселенной. Начиная с 1951 года известный французский астроном О. Дольфус совершил ряд высотных полетов на воздушных шарах, сначала в открытой корзине, а затем в герметической гондоле. Его стратостат, на котором в 1969 году Дольфус достиг высоты 13 км, состоял из 105 метеорологических шаров, каждый из которых имел диаметр 183 см. Дольфусу удалось сфотографировать спектр Венеры и найти в составе ее атмосферы водяные пары.
Примеру Дольфуса последовали американские ученые. Астроном М. Шварцшильд в 1957 году начал серию запусков стратостатов с астрономическими приборами, но без человека на борту (рис. 46). Его «Стратоскоп-2» взлетел на высоту 24 км и поднял в стратосферу управляемый по радио 36 дюймовый телескоп, равный по диаметру знаменитому Ликскому рефрактору! Кстати сказать, на такую же высоту в гондоле стратостата поднялись в 1961 году и два американских исследователя М. Росс и В. Празер.
На высоте в 34 км практически полностью используется разрешающая сила телескопов и становится доступным изучению весь электромагнитный спектр.
Результаты не замедлили сказаться. На тысячах снимков солнечной поверхности необычайно отчетливо и в крупном масштабе виднелись гранулы — вершины бьющих наружу конвективных струй солнечной атмосферы. Отлично различима на снимках тонкая структура солнечных пятен. Со стратостатов были также получены снимки Юпитера, спектры Луны и некоторых планет, звезд и галактик. В инфракрасной части спектра звезды Миры Кита и других холодных звезд удалось заметить полосы воды.
«Стратоскопы» Шварцшильда, наполненные газом, достигали в высоту 198 м (как 65-этажный небоскреб!). После выполнения программы по радиокоманде с Земли гондола с приборами отделялась от стратостата и на парашютах опускалась к исследователям.

Французские и швейцарские астрономы с помощью стратостатов впервые получили «ультрафиолетовые» спектры Солнца и сотен звезд. В 1960 году американский стратостат «Короноскоп» доставил на высоту 26 км коронограф и другие приборы для изучения Солнца. То, что раньше удавалось увидеть лишь в моменты полных солнечных затмений, теперь стало доступным изучению в любой день.
Читать дальшеИнтервал:
Закладка: