Питер Годфри-Смит - Чужой разум
- Название:Чужой разум
- Автор:
- Жанр:
- Издательство:ООО «ЛитРес», www.litres.ru
- Год:2016
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Питер Годфри-Смит - Чужой разум краткое содержание
Чужой разум - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
С появлением многоклеточных организмов клетки, которые были раньше самостоятельными организмами, начинают функционировать как составные части более крупных элементов. Для того чтобы новый организм стал чем-то посложнее, чем комок склеенных вместе клеток, нужна координация. Выше я описал чувства и действия, наблюдаемые у одноклеточных. У многоклеточных системы, отвечающие за восприятие и поведение, усложняются. Более того, само существование этих новых объектов – животных организмов – зависит от данных способностей воспринимать и действовать. Восприимчивость и коммуникация между организмами дают начало восприимчивости и коммуникации в организме. «Поведенческие» возможности клеток, когда-то живших в качестве отдельных организмов, закладывают основу для слаженной работы нового, многоклеточного организма [23].
У животных эта скоординированность имеет несколько аспектов. Один из них присущ также и другим многоклеточным, например растениям, – взаимодействие между клетками, составляющее организм, то, благодаря чему он существует. Другой действует в более быстром темпе и составляет характерную особенность животных. У большинства животных, за немногими исключениями, химические взаимодействия между некоторыми клетками составляют основу нервной системы , простой или сложной. А у некоторых из них масса подобных клеток, объединившихся вместе, вспыхивает электрохимической грозой сигналов, изменивших свои функции, – и становится мозгом. Нейроны и нервная система
Нервная система состоит из множества элементов, но важнейшие из них – это клетки необычной формы, которые называются нейронами . Их длинные отростки и сложные разветвления образуют лабиринт в наших головах и других частях тела.
Активность нейронов зависит от двух факторов. Первый – их электрическая возбудимость, проявляющаяся в первую очередь как нервный импульс , электрический спазм, проходящий через клетку в ходе цепной реакции. Второй – химическая чувствительность и обмен сигналами. Нейрон выпускает микроскопические брызги того или иного вещества в синаптическую щель между собой и соседним нейроном. Эти вещества распознаются другим нейроном и помогают запустить (или подавить) в нем нервный импульс, который называют также потенциалом действия. Подобное химическое взаимодействие – наследие древней системы коммуникации между организмами, «загнанное» внутрь. Потенциал действия имелся и у древних клеток до появления животных, и в наши дни существует не только у животных. Вообще-то впервые он был измерен у растения – венериной мухоловки, с которой работал Чарльз Дарвин в XIX веке. Даже у некоторых одноклеточных есть потенциал действия.
Нервная система позволяет не просто обмениваться сигналами между клетками – это и так обычное явление, – она обеспечивает особые виды коммуникации [24]. Во-первых, нервная система работает быстро . Темп жизни растений, за исключением редких случаев вроде венериной мухоловки, гораздо медленнее. Во-вторых, длинные тонкие отростки нейрона позволяют одной клетке протягиваться через мозг или тело на определенное расстояние и воздействовать лишь на некоторые клетки вдалеке от себя – воздействие целенаправленно . Эволюция преобразила межклеточную коммуникацию из простой рассылки клетками сигналов сородичам, случайно оказавшимся поблизости, в нечто иное – упорядоченную сеть [25]. В нервной системе наподобие нашей это порождает постоянный электрический шум, симфонию микроскопических конвульсий клеток, обменивающихся брызгами химических веществ через щели там, где одна клетка взаимодействует с другой.
Эта бурная внутренняя жизнь ко всему прочему затратна . Жизнеобеспечение и деятельность нейронов требует огромного количества энергии. Создавать нервные импульсы – это все равно что постоянно заряжать и разряжать батарейку сотни раз в секунду. У животных вроде нас солидная доля энергии, потребляемой с пищей – в нашем случае около четверти, – уходит только на поддержание функций мозга. Любая нервная система – машина, дорогая в обслуживании. Скоро я расскажу об истории этой машины, о том, когда и как она могла возникнуть. Но вначале я уделю немного времени общему вопросу, зачем она нужна.
В чем выгода иметь подобный мозг или вообще нервную систему? Для чего они? Как мне представляется, люди, задающиеся этим вопросом, руководствуются двумя моделями [26]. Эти модели ясно прослеживаются в научных исследованиях, и они же составляют подоплеку философии; они укоренены глубоко. Согласно первой модели, изначальная и основная функция нервной системы – связь между восприятием и действием . Мозг существует, чтобы руководить действием, а единственный способ эффективно «руководить» им – связывать то, что мы делаем, с тем, что мы видим (осязаем, чувствуем на вкус и т. д.). Чувства отслеживают, что происходит в окружающей среде, а нервная система использует эту информацию для принятия решений, что делать. Назовем это сенсомоторной теорией нервной системы и ее функций.
Между восприятием с одной стороны и механизмами «исполнителя» с другой должен быть какой-то мостик, что-то, что использует информацию, которую поставляют чувства. Даже у бактерий есть эта система, как показывает нам пример кишечной палочки. У животных более сложные чувства, более сложные действия и более сложные механизмы, связывающие то и другое. Однако, согласно сенсомоторному подходу, роль посредника для нервной системы всегда была центральной – центральной изначально, центральной в наше время и на всех промежуточных стадиях эволюции. Этот первый подход интуитивно кажется столь очевидным, что как будто бы не оставляет места другим вариантам. Однако есть и другая модель, не столь очевидная, как первая. Корректировать свои действия в ответ на внешние события и правда необходимо, но для этого нужно что-то еще, и в некоторых условиях это важнее – и вместе с тем более труднодостижимо. Нужно возникновение самого действия [27]. Откуда у нас вообще берется способность действовать?
Выше говорилось: мы чувствуем, что происходит, и в ответ что-то делаем. Но что-то делать – для многоклеточного организма отнюдь не тривиальная задача, не процесс, который происходит по умолчанию. Это требует высокого уровня координации между частями организма. Не бог весть как сложно для бактерии, но если вы более крупный организм, это меняет дело. Вы сталкиваетесь с задачей создать согласованное действие на уровне целого организма из множества крошечных выходных сигналов – микроскопических сжатий, искривлений и подергиваний – ваших составных частей. Множество микро действий требуется объединить в макро действие.
Читать дальшеИнтервал:
Закладка: