Даниэль Канеман - Думай медленно... решай быстро
- Название:Думай медленно... решай быстро
- Автор:
- Жанр:
- Издательство:АСТ
- Год:2014
- Город:Москва
- ISBN:978-5-17-080053-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Даниэль Канеман - Думай медленно... решай быстро краткое содержание
Думай медленно... решай быстро - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В вынесении неправильного интуитивного суждения следует винить и Систему 1, и Систему 2: Система 1 предлагает неверную догадку, а Система 2 принимает ее и выражает в качестве суждения. У ошибки Системы 2 могут быть две причины: невежество или лень. Одни игнорируют априорную вероятность, потому что считают ее неважной при наличии индивидуальной информации. Другие делают ту же ошибку, потому что не сосредоточились на задании. Если разница появляется из-за нахмуренных бровей, то именно лень правильно объясняет пренебрежение априорной вероятностью – по крайней мере, среди студентов Гарварда. Их Система 2 «знает» о важности априорной вероятности, даже если она не упомянута, но для применения этого знания требуются дополнительные усилия.
Второй недостаток репрезентативности – нечувствительность к качеству данных. Вспомните правило Системы 1: что ты видишь, то и есть. В примере Тома В. его описание независимо от того, точное оно или нет, активизирует ваш ассоциативный механизм. Прочитав, что Том В. «плохо ощущает других и мало им сочувствует», вы, как и большинство читателей, вероятно, решили, что он вряд ли изучает общественные науки и социальную работу, несмотря на то что вас предупредили: этому описанию не стоит доверять!
Скорее всего, вы понимаете, что ненадежная информация мало чем отличается от полного ее отсутствия, но из-за правила WYSIATI применять этот принцип довольно трудно. Если только вы сразу же не решите отбросить полученные сведения (к примеру, определив, что вам их сообщил лжец), ваша Система 1 автоматически обработает имеющуюся информацию как верную. Если вы сомневаетесь в качестве информации, следует оставить ваши оценки вероятности близкими к априорной вероятности. Подобное дисциплинированное поведение дается нелегко: оно требует самоконтроля и значительных усилий по наблюдению за собой.
Правильный ответ на вопрос о Томе В. состоит в том, что следует оставаться очень близко к первоначальным убеждениям, слегка уменьшая изначально высокие вероятности попадания Тома В. в распространенные специальности (гуманитарные науки и образование, общественные науки и социальная работа) и чуть увеличивая низкие вероятности редких специальностей (библиотечное дело, компьютерные науки). Вы не совсем в тех же условиях, как если бы вообще ничего не знали о Томе В., но скудным данным нельзя доверять, так что в оценках должна доминировать априорная вероятность.
Ваша предположение, что завтра будет дождь, – это субъективная уверенность, но не следует позволять себе верить всему, что приходит в голову. Чтобы быть полезными, ваши убеждения должны ограничиваться логикой вероятности. Если вы считаете, что вероятность дождя завтра 40%, также следует верить, что вероятность того, что дождя не будет, составляет 60%, и не следует верить, что вероятность дождя завтра утром 50%. А если вы верите, что кандидат Х. станет президентом с вероятностью 30% и, в случае избрания, будет переизбран с вероятностью 80%, то вы должны верить, что он будет избран дважды с вероятностью 24%.
Правила, важные для случаев вроде задачи о Томе В., предлагаются байесовской статистикой. Этот важный современный подход к статистике назван в честь преподобного Томаса Байеса, английского священника XVIII века, сделавшего первый крупный вклад в решение серьезной задачи: логику того, как следует менять свое мнение в присутствии фактов. Правило Байеса определяет, как сочетать существующие убеждения (априорные вероятности) с диагностической ценностью информации, то есть насколько гипотезу следует предпочитать альтернативе. Например, если вы считаете, что 3% студентов-магистров занимаются компьютерными науками (априорная вероятность), и также считаете, что, судя по описанию, Том В. в четыре раз а вероятнее изучает именно их, чем другие науки, то по формуле Байеса следует считать, что вероятность того, что Том В. – компьютерщик, составляет 11%. Если априорная вероятность составляла 80%, то новая степень уверенности будет 94,1%, и так далее.
Математические подробности в этой книге не важны. Необходимо помнить два важных положения о ходе байесовских рассуждений и о том, как мы его обычно нарушаем. Во-первых, априорные вероятности важны даже при наличии информации о рассматриваемом случае. Часто это интуитивно не очевидно. Во-вторых, интуитивные впечатления о диагностической ценности информации часто преувеличены. WYSIATI и ассоциативная когерентность заставляют нас верить в истории, которые мы сами для себя сочиняем. Ключевые правила упорядоченных байесовских рассуждений формулируются очень просто:
• Оценку вероятности результата следует основывать на достоверной априорной вероятности.
• Необходимо сомневаться в диагностической ценности вашей информации.
Оба правила просты и ясны. Как ни странно, меня никогда не учили, как ими пользоваться, и даже сейчас следование им кажется мне неестественным.
«Газон ухожен, секретарь в приемной выглядит профессионалом, мебель красива, но из этого не следует, что компанией хорошо управляют. Надеюсь, совет директоров не пойдет на поводу у репрезентативности».
«Эта новая компания выглядит многообещающе, но априорная вероятность успеха в этой отрасли очень низкая. Откуда мы знаем, что в данном случае все будет по-другому?»
«Они постоянно делают одну и ту же ошибку: предсказывают маловероятные события на основании недостаточных данных. При недостатке информации всегда лучше придерживаться априорных вероятностей».
«Я понимаю, что этот изобличительный отчет, возможно, основывается на веских доказательствах, но уверены ли мы в этом? При его рассмотрении следует учитывать сомнительность данных».
15. Линда: лучше меньше
В нашем самом известном эксперименте, вызвавшем больше всего споров, речь шла о вымышленной женщине по имени Линда. Мы с Амосом придумали ее, чтобы убедительно показать роль эвристики в суждениях и несовместимость эвристических методов с логикой. Линду мы описывали так:
Линде 31 год, она не замужем, откровенная и очень умная. В университете изучала философию. Будучи студенткой, она уделяла много внимания вопросам дискриминации и социальной справедливости, а также участвовала в демонстрациях против использования ядерного оружия.
В 1980-е годы, услышав это описание, все смеялись, потому что немедленно понимали, что Линда училась в Калифорнийском университете в Беркли, который в то время славился своими радикальными, политически активными студентами. В одном из экспериментов мы предоставили испытуемым список из восьми сценариев развития событий, возможных для Линды. Как и в задаче про Тома В., некоторые располагали их по репрезентативности, другие – по вероятности. Задача про Линду напоминает задачу про Тома В., но с некоторыми важными изменениями.
Читать дальшеИнтервал:
Закладка: