Тут можно читать онлайн Венгер - Психологические рисуночные тесты - бесплатно
полную версию книги (целиком) без сокращений.
Жанр: Психология.
Здесь Вы можете читать полную версию (весь текст)
онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть),
предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2,
найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации.
Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
Венгер - Психологические рисуночные тесты краткое содержание
Психологические рисуночные тесты - описание и краткое содержание, автор Венгер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
По рисункам человека можно определить склад его личности, понять его отношение к разным сторонам действительности. Рисунки позволяют оценивать психологическое состояние и уровень умственного развития, диагностировать психические заболевания. Во всем мире рисуночные тесты стали главным инструментом практических психологов.
Эта книга - первое в нашей стране подробное иллюстрированное руководство по применению системы рисуночных тестов и составлению на ее основе «психологических портретов» детей и взрослых.
Психологические рисуночные тесты - читать онлайн бесплатно полную версию (весь текст целиком)
Психологические рисуночные тесты - читать книгу онлайн бесплатно, автор Венгер
/9j/4AAQSkZJRgABAQEARABEAAD/2wBDAAYEBQYFBAYGBQYHBwYIChAKCgkJChQODwwQFxQYGBcUFhYaHSUfGhsjHBYWICwgIyYnKSopGR8tMC0oMCUoKSj/2wBDAQcHBwoIChMKChMoGhYaKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCj/wAARCAEiAO4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD6pooooAKKKKAEYZU9Pxrj5te1uXxDqWm6TpFncR2Plhpp7sxli6hsYCH1rsT0rkfDo2+PPFQB4P2Vsf8AbLH9KAJhe+LsZ/sXSc+n9ov/APGqRr7xdj/kCaRnt/xMX/8AjVdTRQByY1DxeQD/AGFpec4IOot/8aqQXvi7r/Yuk/8Agxf/AONV1FFAHIzah4zUjboOkuPQaiwP6x0keo+MScHw9pi/72pMf/addfRQByU17402/udE0YnuJNScfyhNRLqXjYA+Z4c0pj/samxH6xCuyooA5P7d4xKZTQtIDejai39Iqje/8bgjboOiMO//ABNJAf8A0Tj9a7CigDkotQ8YucPoOmIPU6if/jZoN94y3HboWjFe2dScf+0q62igDjhqPjYNh/D+kFfVNTY/ziqcXvjDHGiaTn31J/8A41XVUUAcfJfeN8/JoWh499TkH/tGnrf+Myn/ACAdHDf9hJ8H/wAhV1tFAHHfbvHO75dC0HH+1qsv/wAZqUXXjPH73SdCPtHqUpP6wiusooA5I3vjTP7vRNEx/talIP8A2jUGq6r4y07S7y+l0fQGjtoXmZU1OYsQqkkDMAGePUV2lZHjH/kUdb/68Z//AEW1AFnTLj7bYWtzt2+dGsm3OcE4JGavVleGP+Re03/r3j/9BFatABRRRQAUUUUAFFFFAAelcn4eXPjrxW/o1tH+UIP/ALNXWVyvhsj/AITTxYM/8tLb/wBELQB1VFFFABRRRQAUUUUAFFGaw9fdri2ia21OKzgWULNLgEkdNqk/dOe//wCsAG3vXAO4YPQ560oIPQ183a18e7XR/iPfWb3kZ0OxiKNHBEZnuZQTwjnHJzyScccZzmvSfh/8XPDHjPU307S55I7soJY4502M67QT+XT6CgD0iikXpxS0AFFFFABRRRQAUUUUAFYnjiQxeCvEEg6pp9ww/CNq26xPHGP+EK8QZ6f2fcf+i2oAs+H1CaNp6IQVFvGMj/drSrN8OyCXQ9PkU5DQJjjHGBWlQAUUUUAFFFFABRRRQAjcKSe3Ncj4d48feKwBwRasOP8Aplj+ldcwyMVyvhkH/hNPFhbr5lvz/wBsE4oA6uiiigAooooAKKKKAI55EiQvIyoqjJZuABXzT+0x8TY7K1fw34euI/tMmHkmt2yUUjnkcc5r6P1W0iv7Ge1uRugmQo49jXxHoFvpeoePPFmoardmy0vS5lSQKoGYhJtbgZPO0dOeaAOO0vQLfTtOXUdclHnSM6x2sZVm2qu53cHp2UZ6sa6qx8KeLfB91pfirSY7S31JsTR6YjFpkjwANy98g5OcHqa9r0XQPhh4z1uabQ9cnlvdQtTCLaV3DS+WyurqHAc4MYPBwQDmoNBn8I+E9b1i38Sa3eDX5ry4t47u8kZopNyj5d6fIDgqSrYIyM0AevfDDxXB4x8F6frEUkZklT98iH/VuOq11gOelfLn7Ht3cRav4s0jzVk0+B1dMHI37ipIxxggV9QpwoFADqKKKACiiigAooooAKyPGOP+ER1zPT7DPn/v21a9YXj4keBfEZHBGm3P/opqALHhrjQNNBGD9nj49PlFatUNGAGl2QAwPIQfoKv0AFFFFABRRRQAUUUUAFcr4bP/ABWfiv8A66W//oha6o9K5Tw2ufGvi1/+m1uv4/Z0P9aAOrooooAKKKKACiiigBkq7lxkjg8ivjr4M2Gnv8YfFnhbxHYw3tvqEsyssw3cq5YEehwTyOa+xZM4wDj3rw34k/Dyz0O08Q+KtJuRZ63LL9pt7gAl4m24ZBjqG/rQB06+ENG8M3uh6b4O0uKxgN+suoSWrHeIUjkZRK2dzKWCrhsjk074tWfhvTPDeq+JNQ0HS73Uo7fYk11DGzZPCgu3SvGdG+ImieJbf7P8S5dR0jV7a3SQXFjO8f2pOoBRTjOMdR3rX0Pxtp/xe8c6d4WuILi08PWkTSLbzndLcyRrgBz2x157igDL/Y9jceJ9feBi9q1tGJW2YBk3EnHtX1cvIrnPB/hHR/CenfZdAsY7eM/ebq8h9Wbua6NAQuG60ALRRRQAUUUUAFFFFABWH48G7wP4iHrp1wP/ACE1blYvjZxF4M16QjIXT7hj+EbUAWtEbfpFiw6eSn5bRWhWb4fiMWiaejdVt0H/AI6K0qACiiigAooooAKKKKAA9K5LwypHjbxf8xIaa3bB7f6Og/pXWmuU8N8eNfFg/wCmtsP/ACAtAHV0UUUAFFFFABTXcJjPQ/4ZpScY46mua8S6vq0UrWOhaRNc3bw70uZZFjt4ySR8zE7sjHQA9aANu8vrW2RnuZ44URS7O7ABQOpPoBkc+4rwL4x/FCDUvDmt6dp0FxbxQERG6lUKzHhvkB5wf72MYPXmr3xv1kyWmkeEdAjj1TxQTGHuJE3vapxl2cYKsxA9Cax/B/wo0y18USxeL7ya4v5WjuXjuCUjuZByNoHylR05yeOgoAh/ZW8Czw2t54g8QaSjLeY+xy3akyxgFg3ysowGyCCOoqp8VNKj+FvxWtPG+gWkTxywPJPYx9XbBErkDlFKnO7BGRzjNfS1tbtDbmMzF2ydrMi8D+EYAHA6fhXNPpOk+GbbVNa1R1uLiSMtd3tyAzFByEGeAvoo4z60Ac18Ofjh4W8XWiCeUaReZ2tDdyoF3ezZ6e5Az2r1NZkYZU7h7c14F4v+GVv8V/DcXiHTLR/DmsTcxCX5RPFnAaVVHBIPGP1zWv8AAa7l0H7b4O8QXLxa3YFRFbS3BdJIsYDwBgCFOPu8gH06UAe0qdwB9aWkjIKDbyKWgAooooAKKKKACsHx9z4E8R/9g25/9FNW9WL42Ut4M19RyTp9wP8AyG1AF7Rzu0qyI/54J/6CKuVnaDL5mj2Bx1gQ/htrRoAKKKKACiiigAooooAD0rkPCrFvG3jNW/hurfH0+yxf/XrrzyDXKeG1x408Wn1mtif+/CCgDq6KKKACiignFAEF7K8UQaOFpmJA2qcH61V1fI0q8Jn+zYhc+dn/AFZ2/e/DrV7du9q4zx/PLc6l4d0CG4eIajcl5woB3QQgO4J7Anap9QxoAd4D8G6dots10lsPt1xI07yynfJljxlj3wB9DmulvrGG4hMc4BOdyttBKH1Ge9W1yuT1B9KoXMd7Lq0TK6JYxxncvUyMemfQCgCnNodzPZNCmtahExGBKpUt/KqTwWel2iadr95LqZKPcB7pA2VUr1AGDjOa6qMYX8az9V0qLUZreSV3Xyd/C/xBkKkH88/UCgC3amOS3R4v9Wygr9K8w+Lui2EWveHfFF/AHhspvs9w6fKyo/RtwIPHI68bq9I01IbK2jsYZfM+zIqfMwLAY4z+FY3xGsBqvgfXrTyRM0llL5cZAO6QKSvB4+8BQB0sRBjUjuM8U6uW+GGsvr3w+8P6lNjzp7RPMx03qNrfqDXUjkZoAKKKKACiiigArD8duY/BHiF14ZdOuCPr5TVuVg+Pv+RE8R/9g25/9FNQBoaMgTSrJVGAIU/9BFXqp6Tzpdl/1xT/ANBFXKACiiigAooooAKKKKAA9K5Xwyd3jHxcw6LPbofr9nQ/yIrqj0Ncn4Ub/irvGael9AT+NpD/AIUAdZRRRQAUjdKWgjIoAoW8VwLu5kmdvKYgRxk5AA6n8a5VUj1H4tSzhw/9k6YsG0HhHmk3NkepVE/Wut1e8g03Tbm9umCwW8bSOfRQMmvKP2d7yTX7XxN4ouDmTVNSbZxwI0UAAH86APU7e/WXULqzVHD26I5J6MHLYx/3yayvDviS38Q6lqKaaytaWT+Q745eQH5sew6Vy3xQ8RTeELXWNRLhZb22htbL/rqomLE+wDA1ofBPQYdG8AabIFBvL6MXdzL3kd/mJP50Ad6gwDWfqj3SzWv2UJ5fmAzszYIQAngd/wDCtEDAqnqTIltO8oLRiNi6+wFAHMJrNs/jlYrBTMGjENy6JlFbG5CW6HjI9q6qRFmjKuMowwwPQj/Jr5H+HOuzaR4nvvLluIrC8m3I0rELEqSbkCg9tm5cD1Ar64tJEuraKaJ90TrlT6g0Acl8LLN9K0W+0YnMWnahPBCMdIy3mKPykFdsOlcfokjW3jXX7ZsrHdSRzR+hcRqCfxAH/fJrsBwKACiiigAooooAKwPHxx4F8RZ76dcj/wAhNW/WB4+/5EXxEfTTrk/+QmoA0tHJ/sqyyMHyUyP+AirtU9J/5Bll/wBcUP8A46KuUAFFFFABRRRQAUUUUAI33T9K5Hwsu3xv4zP964tm/wDJaMf0rrz0Ncr4YGfF/jFj1W7gT8Bawn/2Y0AdVRRRQAUUU1yQMigDnfiNbfbPBWrWu0uZ4TFtBIzuIHb61xvwz02Xw54H+H+nxZjEs7eeucZLW88mD+IH5V0HxM1Yw6Lc6dDM9vcXMWFnHAUE7evrWR8WNe/4Q7wVY6upRpdP3SRhz96QwSRrxxkbpBkAigDzfxjqD/ETxp4nSwWO6tdAt2treJhkGXLGVse6oVB7ZFe1/C66W6+Hvh+ZVKhrOPA69Fx6V4f+zh4USH4c+IfEWpXLs2rRyxkNlSFAyW3/AO0efTpyawdB0r4o+IvD0B0S7u9Mt9PT7JBFbXbwq4UZBbMgyTkcgYoA+t93oKx/ENzEqRWUrskl8WgiZQThtpYk+wAJr580n4U/FbUrZZL74hahZTAjdE9xO2DgHg5wR9Kp+Kfhp4wtR5mt/Eo3U8MTi3gleQswIO4DngkA80AVvEWhNqPhPXtct/JiTTrx7SMeYThEIy4+jYOPQ16p+zl4xk8S+Co4LnDz2YCbg2dwyQck+hB/AirPgjwlbSfCGy063MUlw8TSrN8wDzHO4kNnqcgjoRn1rxHwzqNx8Kvi5pSXsclpoWpbo5lBAjAZiobHONhCg4A4XNAH0LqmswxeI7tRAIry1njdnILb4AFDNgd8SOB9K7xc7RkgnHauJS1MXxUFwxBhvdHK7eoLRyqTn8H/AErt16CgAooooAKKKKACsDx//wAiJ4j/AOwbc/8Aopq36574gE/8IN4hHY2E4P0MbZoA1dIOdLsv+uCf+girlU9K402zA6CJB+G0VcoAKKKKACiiigAooooAK5Xwt/yNvjHkc3sJx/26Qf4GuqPSuT8MoF8aeLSCSWntyT7/AGdP/rUAdZRRRQAUEZoooA474m6ZFqeiWlnIisJr2FeR6Nux+leY+PPhD4j8SRatLceIIboTIzQWbowjjYBgoU57ZB+oFe56qxjthII438tgxMhAVAOrEnpgZrL8MSSXsV1qMiMBcykwqwxiJThOPcfN+NAHk+tl/A3wOtdNZxBdgNCSB1KMQ2eOchcfjWx8Gp9X/sE3Mtr5cl6Va3W43hRAoCoBjoSBn8ah+O1vc6trXg3w7D5TW+oX4MqDmXahDFv90AHP4V69BCkEKRRIscaKFRF/hAHAoAyNe0WLUVje51C9tAuF228/lqSfwz1rnL3wXZ2Fhey2WoalJK8bjF1eGSNsjHzA9h1HvXRzaXeXN2rXepP9lWQOtrHEqK2OQCxBbr6Gm65pNsPDWoWkMW2KVSzBQeTxz+lAHF/AnVLy40O/0vWbh5tQtLuVgHHSJnO3B7jg10XxB8EaT4tsAuoWMU9xGrrE7HYVD/K3zAZ5B/MVw/gC6bTPFMLXD4+23NxYHfwxdGLoAPTa1exzbmhdojltp2j144/pQBhadAf7WhuJGj+yLEI9PEfUoVyxY+nAxXSLyorlfDOZroK4dRp9pFZ7SCF3lVZxjvgbOR6kV1S/dGaAFooooAKKKKACsDx+P+KE8R/9g25/9FNW/WB4+P8AxQniPn/mG3P/AKKagDT0kf8AEssv+uKf+girlU9K/wCQZZD/AKYp/wCgirlABRRRQAUUUUAFFFFACN0rlvCv/I2eMva+hx/4CQV1TdK5Xwr/AMjZ4z/6/wCH/wBI4KAOqooooAKKKKAKupafa6natbX0KzQMQSjZwfr6j2qUosaqsYCqBwAOmKlrlvif4mi8IeBtW1qVgJLeEiEd2lb5UA/4ERQBxfg2EeJfjN4j164kWSHRoY9NsUVyQhbd5jcdztPXsRXrUYyvI47Zry/9nCxeD4bwXl0v+mahJ9qlYpgkFFCDPUjYF/M133ia9bTNEvLyNwjQoZBu6Ejt+PSgC5LcQxXMcBdFmkBZUyASB1OKZewi4tLiJ84dGXJPr715n4Av4vGXxB1jX2mZ49KAsLWPIKLuVXZhjqevPvXqXUfLkAigDwuC4ktLnU5Io1Mun3ltfoZiD5cb4il2kDr8ua92gKvErLypGQfavJvGVvDpnj2xikeUW+r281jIFHyqH5UkdyD0+tejeErw3/hrTrh8b2hXdjsQMEUAapRSc45p1FFABRRRQAUUUUAFc58QjjwPrxHIFjKcfRDXR1z/AI+GPAniP2025P8A5CagDU0ps6bZsOAYkOPwFXKp6T/yDLL/AK4J/wCgirlABRRRQAUUlFAC0UlFACnpXJ+EHWTxR4ydTkf2hEv4i1gH9K6s9DXI+DQq+KfGoQYH9oxHGMDJtYc0AdfRSUUALRSUUADHGOeK8e+OAuNf1bR/DNpAbnCPeyxA43SEGOEfQEySEdxFXr7gEAHpXiHw91WTxh8aPE9+HVrLSJDbR9wCoKRlT6Yacn/eoA9k0Sxh0zS7Wwtl2QWsKQRr6KqgCuW+MGvjw/4KvZlSN5pkMUauRjJByeeu0fNj2rs4xgYAwMDH+FeR/tLXMdn4QtJ5TEQ1wsIWUEqNxGWIHoB+RNAHIfsuxQaNdavaPctvubGC8mjkIGyTzZVfgewT9K95twb+eK9WRvs+z93F0yc/eb+lfNvgnQ7XTvi9pB02+MumF0tJY5RhrlXtnmRxngqXQnPU19SxBdg2j5ccfSgDyX4kQXbz3YtpyiQXUE3zH7qMp3EcZA3AEmuj+E97Nd6LfrPE0RjvpvlJyAGO7g4HGTx7Vm/GSwa4sJQkjQtPayKkiLlg6Atx6EqWANWPhpeO1zdQytcSi4ghuvNf7obHlMn13R7vowoA9EHSikU5UGloAKKKKACiiigArn/Hpx4H8QKf4rCdfzRh/WugNc/48x/whWvMwyFsJn/KMmgDV0lSumWYPUQoP/HRVuqelNv0yzZc4MKHnr0q5QAUUUUAJRRRQAUUUUAB6GuW8K/8jX4z/wCv+D/0kgrqTXJeDt3/AAk3jTdn/kJRY/8AAWGgDraKKKACiimucKT6UAUddmkg0yZ4QpkxwGbH1/TJ/CvJv2XdIa28J6vqc8BR9S1CSRCw+9GOB+Gd1bnx01yXSPBuqPbSBZobR5AP4tzERqR+bVq/BmOa28AabZ3MQSa0QQOwbPmMowW9snNAHat8pyOnevAv2nZItXufDuhRmR5pJmMqKDwpAAPvzj6V77IAQAcc9jXzt4jSPXPjhpMNzK0xhvvL2h8YVE3n6DdjjvQBo/EPQ/7A8UeDpNItQXCRmGIOF3T20cnlpnpyJMfkO9e6WEqTWscsTFo5FDqx7ggEGuD+MELWugWevQRJLJol1HdsrD/lkJE8wj3Cg12Php5ZNGgeZg+/LRtnrGSSn/jpFAEXimxGo6TPCFLSopkiA7uAcD8en415t4Akh0XXYTc3pWHUIZIYIXlGDNAVD49dyhT9Q3qK9ef73rXz/wDGvSk0uxF3BF5b6Tqgv4nJAGy4BB/8iKV2/SgD3+2kEtvHIAQGUHBGCKkrP8P6ra65ollqdg++2uohKh74PY+46EeoNaFABRRRQAUUUUAFYPj/AP5ETxH/ANg25/8ARTVvVz3j8/8AFFa56GylUj1BU5oA1dJ/5Bdl/wBcE/8AQRVyqmmqBp9oAMARKAPwFW6ACiiigBKKKKACiiigArlPCn/I1+M/+v8Ah/8ASSCuqY4Un0rlfCRDeKPGTj7p1CID8LWEH+RoA6uiiigApGGRg0tNcgAZ9cUAeM/tD3EmoQ6D4cts4vLgXF2E5YW8ZGePcmvUfCljFp2g2lvCrqojBw5yRnnr+NeMeJ79ta+Iviaa3RpRpkEGmQSKuQkkjFnH8ua93sgVtokPBVFB+uKAGagP3St5zRKjCRiO6g5IPseleLeD9Ma4+LlrPeQA3EVrc3RYjkrLIBG3/fIxXr/ie6+x6DezZwRGQMep4/rXMeDtPFv4x1cENI1naW1oJ26twWI/OgDrNUsrbU9PubG/iWa0uImhljYcFGBBB+tVvCFn/ZmgwaeQR9lZ4gGYMSoY7Sceq4P41rYAA44Fc7Pt07xZCchYdTjKMOceagJGB7qWz/uigDpawfG2jLr3hnVNNb5WubdkjfHKSdUYe6sFI9xWtZzGVJC6Om1ynz/xY7j2qxQB5r8F5JbXRb3R7i0+xfYp8xwBcLEHALop9Fk8wD2xXpK/dGOlcvqKJpviyC9ZmSG6HluxPyhugGPUnbz/ALIrqF+6KAFooooAKKKKACue8fHb4I14+lnKf/HTXQnpXPePsf8ACDa/nr9gnAHv5bY/WgDX0450+094l/lVqqelZ/s2z3D5vKTP/fIq5QAUUUUAJRRRQAUUUUAFcl4LbPiDxgvddSX9YIq609K5PwiMeKPGnbOoxH/yUhoA6yiiquprdPYyrYSJHckfIzrkA+4oAs5GSMjI6imzNiNsdQK5VrXxFLvW7jiaNs5WK+IHToD5SkfrVDWvCz6zepc6loOn3ci8ATanOUHAxldhX8cUAZfwk06PTbnxI2oXFu19f6iZniZhuDdhjrwMV6evGa4Ox0efQ7oXdl4RsBKyBCum3SgDB44dUGffrW1BdJPfqL621KwuSfLQPITGw9QVJX8+aANPWbX7bbJHtidd6krJnBGeentWd4XgmXUNduJ0Kebd7UBHJVVAB/U0up6Nd3cVrHa63qVkYSWZofLYyezFlPHsMVf0SxksLeZJpjM8kpkLlcE5AHPvxQBo1jeJbI38MMcUiR3aSLNblz/GvPTvWzXPeI9Pe6v7C6e5NtHaPmNok3SMzAqQc8AYPcEflQBa0W5fdNZXcyy3cBBZuBuDcg4H5VrIwKjJGTXm+peFNYtr9NZ0maEaoWKTLGQhmjYgFmcgqSAAf9X6irkngV9Ska61fVdT+1gbUe0vJIjH7DG1CMdimD3oA6LxXYNq+iXtnExUyJhWAB5/H8ORUvhe5kutBs3mOZ0QJIck5YcHOQOfwrmtf8I6hqdlDaS6hbahawuJEg1C3KsSOn7yFowv/fB/Grltqd5osWzUfDzQQg5aXSz9pj6feK4D5467D9aAOwoqhpWr2OqQh7K5jlx1UN8yn0I6g1f60AFFFFAAelc949/5EnXP+vSX/wBBroa534gHHgfX2HO2wmb8kJoA2tP/AOQfa/8AXNf5VYqnpTb9Ns26ZhRv0q5QAUUUUAGKMUUUAGKMUUUAIRwa5Pwa2/xF4xY/e/tJAfwtogP0Fdaelcd4JZh4l8aBiCP7TQjHP/LtDQB2OKSlzSEjOMjNABTWZQMk8DvSkg/nWPqunyX13aifMliobzYg20M3Yn1Ht70AZmv+N9L0pDlpbhv4fJQuDjryoOKh0PxrBrEYa0066Z8/6tiu767c5xW5O9po6RlbVkjPyhbeAv8A+gg1PDY2bTR3cdpEswztkEexgD196AM3SPETahq1xYvpWoWrRAHzZowI2J9Dn2roBSAYp1ABTWAOc8+1OqtevMqr5AQtvXO84GM8/jQBm3Wp3pYra6RczENglmVAR65NVmfxHcNKscVhZRljhpHaRgPXA4rbs7pbkPtWRdrFf3iFc49M9qxNaj1g36yWyLc2YwfJjn8kg/7XB3fmB7GgCkmleKILmWZfENrcb2DCCWz2Kox2IOf0q/8Abdet1/0jSIrgjnfazjB/4C3NV7W51K81q1L6Je2YQMJZ5ZIjGy44VdrEk529VFdUOAAaAOIvopdTlt5oNIvbPVVlQrcNGFCgMMhmB+ZMZ456kjBxXcDgUmRznjHrSg5GR0oAKKTcPf8AKlzQAVz/AI8JHgnXQMc2MynPuhH9a3yRiuf8ec+Cdcx3tJf/AEE0Aa+mLt020A7RIP0q1VfT+dPtf+uS/wAqsUAFFFFACZH4Utea6/8AGLwzoPie+0TUhfpNZPHHcTLbloozIFK5boM7hXoMWoWkyo0VxEyvjaQ45yMigCzQSB1qvFe20srxRTxtKn3kDAleccjtzXP+NvGVh4SsILq+hu5zM/lpHbQmR84zzjpx3oA6ckY571xr6P4isNe1e80ebSDbahKkzLco+5GWJI/4eudmfxrn5fjf4SSXTRHJdzR3saSmSOElYFdtqmQ/w816TdXsNvYS3jsTBHGZiVGflAySPwoA5l4vHRP7u48NKe2YZz/7MKEh8dgKZLzw2x7qLedf13moPCHxJ0bxNfw2ltFfWs09t9rg+1wGMSxcfMpPXqDXZNPEFyXUDGeTjigDlynjckfvfDoGef3cxyPzqLyPHhZybvw1/sj7PN+Wd4xXWfaYdm/zE2ZxncMfn+NDzxIQHkVSemTjNAHM+T41QDF14flbHJMEyAf+PNn68U14fG20+TL4cRz3MUx/qK6oSoQSCDSCeMnG4dcfpmgDkFt/H28F7zwzx1At5ufx3VYC+NT1k8PfULN/jWj4r8R2HhjQbjV9Ud1s7fG8ou4jJx0qpB410WfxHZaHFcM9/d2Zvowq/L5QxyT26igCu8fjg/6ubw4v+9HMf61CsPj9SSZ/DEgPby50x+OTXXieIqGDqQ2cYPXHWgTxYPzrgDceeg9fpQBzCR+N9nzSeHd3+7Pj+dV5IfiAfu3fhcexhuD/AOzCtnWPE9hpN3aW90LlpbogReVCXB5xyR09ee1R+L/E9p4Y0uO+vI7iZZZ0to44E3u8jnCgD3NAGbCvj0cSnww3+0vngn8Of5054/HPHlzeG19cxzH9citXwn4js/E2iR6nYLOkDu8ZWZNrqyMVYEfUGrGva1ZaDo91qepTCKzt13yORnAoAwY4PG+4mW98Od8KlrN/6F5nH5VMqeNNoxJ4fxj0mP8AWqmpfELS7CDTrmWC9ayvIopmuUgJSBJHCIXPbLGuwe4ijALsFHqeKAOYe38aSDBufDyf9u8r/wA2FKYPGarj7ToEp9fJlj/9maupV1YZByKw08WaTJ4wbwxHOX1dLQ3jxquQke5V5PY5YcehoApeX417y+Hv++Jv8aq6zo3i3VtLubCfUdDjhuI2jfbZyscHjgmTg/hXYmeMZywGODnsfSk+0RGRkDguvUA5IoAZaxNDBFG2D5ahcjvjjNWMio1mR13KwKk4BHSuK1z4k6To2tXlhdW2outkYxc3EUBaOEvyu40AdzRUSXMToHV1KHvnipNwzjvQB4VqHwnufE/xK8Y3uvz3lr4e1CSzkijt5lCXZjjVfnHXhlyKzL/4X+K/+E3ub6wvPJ0ZdVimtrbzOPLEYXefpjpX0LtIJIxz+FKVJ70AeG/D3w54o8GjWLiXwvbXuqpHIVvv7Q+a+YybgNpHAx3OOR711PxfXxhfeEYbPwnpiS3t3+7uz5qq0CFctsYnGT0zXpBUjJH4AAVwlx8StNg8Rz6XNp2piGG8Swe+8pTB5zIrKuQ27ncBnb/SgDx3XvhPrOo2ui2ukeHZdKWSCG3vXXU1ZVVH3fvFx8xGSRjua9xthrGoeGte0+/0xbV0Sa0s8ShvtMfl4Vz6ZPGKxbb4r6ZdXWswW+nX0k2lqZZVR4n3RhtrMuHPTBODg+1Jp/xh8L6gLt7SW5mhso5pruRYvlgijBPmN3wx4UDk+nBoA8w8OfDnxba2USW2lXGm3MOjy2VxJcagJxcuUARYl58sBhnqK1v+EM8f6pYxNrLOyray28cL3CmRAxjwGK4B+630Fdnovxl8Nalpn25ku7SAXcVrIZxGBGZASrlgxXGAc4JIxyKs3vxd8M2dpBc3TyxW80E08MhKYkEbbSFOeSSOP6UAccfAWqaXLMq6M+qaCmoTTLpkdyFLq0ESo43HB2sr8E/xZqJvh54l1LR7SDVYv3ul2LraM1yWLTSTiQDPXEcahMnrXdXfxQ0aCdw1nfyWMLQR3V6Il8m1aXaUV8kH+Jc4BxnmnaB8UNE1vxnP4dsY7k3KPLEJSq7HeP744O5cc4LAA4OM0AcRfeAfHHk7bLVJMtPesiF1CwCQDYd2NxzyMcgVH4S8C+KbeTTGEuoaV5d95srSSQuIx9nkRmWMDaQWKctk9+DXquu+LLfStWttMisb3UL6RDMYrOMOY4wcF2yRxnsMn2rKb4j6T/ayWkllfx2TXv8AZ39otGot/tPP7vOd3UYzjGeM0AZNx4S1i9+EaeH7sCbUS5V/OYHK+exySPVcfnXOSfC7VPDl5LfaG66jdtZXVvE1wxXyo2VRHF17Ddj3xXaxfEaObQJ9atPD2tz6UkfnRXISJRPFnG9QXBHHOGAOO1Nu/iZp9vHE7aXqjbbZby6RIkJtYG+67/N074XJ9qAPOvC/h3xroN5YXK6HPNDbag1wLT7VFGSklq8TDA+UDzMN+XfNNl8IeOb/AECOO4sJrYW9lp9pLbpdJJJciEP5mCfl53A4PUjrXpB+J2jL4zs/DscN1LNdMsaXKlBHueIyDqwY/KOoUgE4qvY/F/wzf2hmtHmlCaeuozopRjCpZV2P82N4LjIz2NAHB3PgHxrcaCbS1ubu1h+wCPyp50eZyJtwj3KAqjHXAPYZr0fxfpGq6xJ4U0+3gH2S1v7e/vbouMIIDvCAdSWYL+FUNX+MXhfTbe5lV5rnybo2aiDYBK4XcSrMwXAHfNdfpHiGDV/C8etaZBNcRSwmWKBNokc4zsGSBnt1x70AcZ4ZOt+DPDssFxoj3EQlv713jmAK5md40AAJJYMOe1dnfwy694NmjktRHc3tkf8AR5sHY7Jwp+hPWuUh+KNrdaVYX0Hh/W5Gv5ZIILdYo/MkMe7cR8+MAqw69jVW9+Nnhe0ksYwLuT7SoZ/kVTDltuGVmBJBzkKDigDO8U+GNfvPCXh7RLfRknntoIGjuvtQ22tyjDJkTjemB759B1rpPiZ4dvfFMuk2MUIfT4nlubh/M2hiI2EaYzzlmBz7Vn2vxm8OTaxq1hPFeW/9mxTzSyuEZSsLAMQFYsOoIBAyKvXHxJsrZZUvdK1e1v0MO2yljjEriViilfm29eDzmgC98Ov7as9Hs9M1vT/IFpaxILjzg/mvj5hjsR65rkvCfgTxFoXxWXWbu8tr+yuLS6+0XQg8t2eSRGCN8xzjYoB7AYre1L4paNpF79h1K1vbS/M8EC2rKjOzykAdGIwMjJzj612WmXsl4s7S2VxZ7JniCzKAZAOjjBPB7Z5oA8T8W/Dvxhqus+IbmxvzDp9zqMVylqZOZPLWMJg5+UffyO+BUI+Hvir+1dbmH2oXEolIuRdxpHcI0gYIAE35KgryeM967SP4xaC154ht/s1+H0bzTOQifP5cnluR83rjrjitCX4peHdnmW0k13ELU3IkgVW/jCbOud5YgYx3oAk8FQ3emxWlrB4VfSrC4klaYPdrI0O1V2kqMg7juGAeMA98DgPH/gXXNU8X+IpbPRZrpdQ+zta3Y1AQxQMgxueP+PB7e1eiXPjf7NHYxt4e1Y6hdea0ViFi83y4wu+QnfsVfnUfezz0rOh+LXh+71GwsbJbu4vL6KOS2hVFBk3O6EcnI2mNs5wOOM0Aca/hPx6s2rWqvusLm4WZybgESfvIm/drjKn5Xzzg17Fo9he2pm+36nPfKxBRHjjTyvYbFGfxzXJxfFTQ213V9LlSZJdOgluGZWjkEixj5wAjEgjjg4rU8BeOrDxnbXsun21zbm1kWN0mKEkMgcMNjMMYYfkaAOwxRiiigBGwFJPpXmtn8NbOXxVq2rapd3Vws98t3FZpLiHKxIoZlxywZW/DHpXpTdD3rwzxrrviO28Z3MPhy41GZBbzfaYnicJHthyGj+TaRnaQ24kkkYoA6my+EXhyzaYQTakkUqGF4xcjBjLbjH0+7n8eetWF+F3hqOW5ljt5E+0/aROinasscww0TYHKjqo7YrzG11n4oiCJ78Tqo00gGGPc0hyrNLj+/tYgD1Brb0zxfqenask/27VL/wALR6jbx/ari0k8whrafzEI2hiBIsXOOpAoA7/TPh9pGnW0MLTXlzHb3MdzH58gbayfcXgfdGelNl+HHh+4DLLDJIGhng5IO0THc2OODk8eleS6Z4z8c6voBfRTNcbNML3F06MvlSrcSAqoIBMhQKMdq07rXfFMdzO8M2tf26l1Oj2JtpPsy24jYo27btzkA5BOTxQB6FP8NNBnu1kdr0WztC9xaiXENy0QGxpFxz0GegOBmr2i+B9J0fXJdTsHu0aWSS4Nv5v7lZJPvsFxnJ9zXlWpeKfG1pYourW91GJ9OtNslmJD5bPK++WRhGSrAKMgD09abpOveMNZ0TT7MXOqxX1kb2W8nW2ljMka8QcsoLbiQcdcA0AeueIvCNprWrQakbu+s7uKPyTLaybPMjJzsPB4z3HNUl+Hmirq63pa8dVvP7QFo0uYPtG3HmbcZz364zzXmR8b+M7a51zTvss1wGSRoXNtN51viAMGzjaV3ZHrmpfEXifxraw3cWpxTWzymyjSay8wxQhkkZ2LCMtklVBwOpHIoA9K0rwBpOn6bd6fBNqBsLiFrdbWS53xwRkklYx2HTrmk1n4e6TqksbNPe2w+zLZziCXaLiFeiPxyB7YNeQSa/4+1CLQ5LOTViLeyU3yiJ4GWQXBXcwI+fcoHy9gCe9eu/Ee61NbbSNP0SW4t7y+vo42lgXJSIZZyTjAHTmgB7eANCXWY9WaGV76K5S5SYsMx7I2jRAccIAxOPXmsZ/DHgm6uv8AhHI7nzL1dMbT5LeKXMhg3q3z4HXKjk+przS58X+NIY9EkB1QS20du9wHgkZbiNpmDttRCCAg5LEY4x1pLCTW/DmnzLpB1d/EbSXx1WN7JxGvzSGOVHK4JJC4IY5zQB69e/DLw7dRMIop7V/OE8TwMB5LBNnyjGMFfUGup0bTYtK0u30+0aRobeMIrStlmx6n1rxWDxJ43uzNaXkd3ZXt7JYpbJbxM/lIcGUs+MBtuSewzSHxh4y0HU7KHyrnUle1RDDNZzO8zfa5ELKyDCERgHLcYAoA7bVPh1FPFoFjp17e2NlptxPMzwzbZcSrIcBsH+JvyqYfC7w+rWbW/wBttmgjEZMMoBlUNu+ckEk57jB5rz2PxJ8SP7It5DbtsMV/tmVHaZtkzAF024DBR8o5zirUviXXEu0S0vtZn8KNPELjVDaOLiLKEsqrtzt3YycHHY0Ado3wj8MyalfX13HdXD3a3CsssoKx+dnzCuAME575xir9l8PdNiYyXd3qF9dF4D9puZQzhYW3ImQBxn865DxBJrcEl1f6PqetS2aeG5723MqMN10q4Tcu3OSDnGO1dH8I/FeseI7G7TWrRUa0SALdJDJGs7MpLDDjJZSMEjjJoA1NV+HuhaprVzqt3bs17ceRvlyMr5LBkC8ccjn1rW8PaRcaZFeLc3sl29xdyXALkny1ZiQg9gOK2h0ooA87Pwi8ONPqkzvfNJqPneYfOA2ea+99mBxz0znFT2vws0C3t5o917K88TRyzSTZkYswbeTj7wIGD7V3tFAHDz/Du1ntbVZdX1dr22d2jvvtGJgrgB0zjG0gDjHUA0i/C/w6hgaKKaKS3iijhkST54jGzOHDddxZ2JPfNdzRQB5zH8I9DgvZ7q1utSgkmWZCEuPlCynLqARwDXTeGPCWleGTdf2RbrAtyUMiKBtyiBAQMeij8c10FFABSUUUAMmJETkHB2mmSACRCAAWbnHfiiigBdigYCgD0A96bbKpiGQDyTyPeiigCva20FvG4t4Iog05dtiBcsTyTjuanCrsJwM7sZx2zRRQAqAGJiQCev6UsCqY42IBbb1I5oooAanKLnn5sUk4AIbA3ZAz7ZoooAZAT5SnPJGT+dPH3RRRQAsQDbywBIZlGfT0qSNVKHKjqe3uaKKAIYwNy/SlhAyg7AtgfjRRQAsPzQ5PJ255prACNCAM/KM0UUASIqtCGYAkrjJHanbVJbKjjpx0oooAkThRj0paKKACiiigAooooAKKKKAP/9k=Читать дальше