Пиаже Жан - Психология интеллекта

Тут можно читать онлайн Пиаже Жан - Психология интеллекта - бесплатно полную версию книги (целиком) без сокращений. Жанр: Психология, издательство Питер, год 2003. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Психология интеллекта
  • Автор:
  • Жанр:
  • Издательство:
    Питер
  • Год:
    2003
  • Город:
    Санкт-Петербург
  • ISBN:
    5-94723-096-8
  • Рейтинг:
    3.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Пиаже Жан - Психология интеллекта краткое содержание

Психология интеллекта - описание и краткое содержание, автор Пиаже Жан, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В книге швейцарского психолога Жана Пиаже представлено изложение сути теоретической концепции развития интеллекта, являющегося основой, стержнем психического развития, построение которой он осуществил в 30-40-х годах. Он считал принципы этой концепции ключевыми для понимания эволюции мышления в разные исторические эпохи и для различных областей знания; он разработал, исходя из этого положения, особое направление исследований, названное им в дальнейшем генетической эпистемологией.

Психология интеллекта - читать онлайн бесплатно полную версию (весь текст целиком)

Психология интеллекта - читать книгу онлайн бесплатно, автор Пиаже Жан
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Более того, одновременное построение группировок включения в классы и количественной сериации ведет к появлению системы чисел. Нет сомнения, что маленький ребенок не дожидается этого операционального обобщения для построения первых чисел (согласно А. Деккедр, между одним и шестью годами он каждый год вырабатывает по новому числу); но числа от 1 до 6 для него еще интуитивны, ибо они связаны с перцептивными конфигурациями. С другой стороны, можно научить ребенка считать, но опыт показал, что вербальное употребление названий чисел остается не связанным с самими операциями счета; иногда эти операции предшествуют устному счету, иногда идут вслед за ним, во всех случаях не подчиняясь необходимой связи. Что касается операций, образующих число, т. е. взаимно-однозначного соответствия (с сохранением, несмотря на трансформации фигур, достигнутой эквивалентности), или простой итерации единицы («1 + 2 = 3», «2 + 1 = 3» и т. д.), то эти операции не требуют ничего, кроме аддитивных группировок включения в классы и сериации асимметричных отношений (упорядочивание). Эти группировки, однако, должны быть слиты в одно операциональное целое, так что единица является одновременно элементом и класса (1 включено в 2; 2 включено в 3 и т. д.), и ряда (первая единица перед второй единицей и т. д.). Действительно, пока субъект имеет дело с индивидуальными элементами в их качественном различии, он может или объединять их на основе эквивалентных свойств (тогда он конструирует классы), или располагать их в порядке по их различиям (тогда он конструирует асимметричные отношения), но он не может группировать их одновременно и как эквивалентные, и как различные. Число же, напротив, является набором объектов, воспринимаемых одновременно и в качестве эквивалентных, и в качестве отдающихся сериации, поскольку единственное различие между ними будет тогда сводиться к их порядковому положению. Объединение различия и эквивалентности, осуществляемое в этом случае, предполагает отвлечение от свойств, а именно благодаря этому происходит образование однородного единства «1» и переход от логического к математическому. В высшей степени интересно, что этот переход генетически совершается в то же самый момент, что и построение логических операций; это означает, что классы, отношения и числа образуют единое целое, психологически и логически нерасчленимое, где каждый из трех членов дополняет два других.

Рассмотренные логико-арифметические операции образуют лишь один аспект основных группировок, построение которых характерно для возраста примерно 7—8 лет. В самом деле, этим операциям, объединяющим объекты для классификации, сериации или счета, соответствуют конститутивные операции самих объектов — объектов полных и вместе с тем единственных, таких, как пространство, время и материальные системы. Нет ничего удивительного, что эти инфралогические или пространственно-временные операции группируются в соответствии с логико-математическими операциями: ведь это те же самые операции, но отнесенные к другому масштабу. Включение объектов в классы и классов друг в друга становится здесь включением частей или «кусков» в целое; сериация, выражающая различия между объектами, предстает в форме отношений порядка (операции размещения) и перемещения, а числу здесь соответствует мера.

Итак, мы видим, как действительно одновременно с формированием понятий классов, отношений и чисел конструируются — и притом удивительно параллельно — исходные качественные группировки времени и пространства. Именно к 8 годам отношения временного порядка («до» и «после») координируются с продолжительностью («более» или «менее долго»), тогда как в интуитивном плане эти две системы понятий остались независимыми. И едва объединившись в единое целое, они порождают понятие общего времени для различных движений на разных скоростях (как внешних, так и внутренних). Особенно важно, что именно к 7—8 годам образуются качественные операции, структурирующие пространство: порядок пространственной преемственности и включение интервалов или расстояний, сохранение длины, поверхностей и т. п.; выработка системы координат; перспективы и сечения и т. д. В этом отношении изучение спонтанной меры, которая начало от первых оценок (вырабатываемых путем перцептивных «переносов») и завершается к 7—8 годам транзитивностью операциональных соответствий ( А = В, В = С , следовательно, А = С ) и выработкой единства (путем синтеза разделения и перемещения), предельно ясно показывает, каким образом непрерывное развитие сначала перцептивных, а затем интуитивных приобретений завершается конечными обратимыми операциями как своей необходимой формой равновесия.

Важно отметить, что эти различные группировки, как логико-математические, так и пространственно-временные, еще далеки от того, чтобы образовать формальную логику, применимую к любым понятиям и к любым умозаключениям. Именно здесь заключается существенный момент, выявление которого необходимо как для теории интеллекта, так и для педагогики, если мы хотим, в противоположность логицизму школьной традиции, согласовывать обучение с результатами психологии развития.

Действительно, те же самые дети, которые уже достигли только что описанных операций, обычно становятся неспособными к ним, как только они прекращают манипулировать объектами и оказываются вынужденными строить рассуждение при помощи одних лишь вербальных предложений. Следовательно, операции, о которых здесь идет речь, являются «конкретными операциями», но еще не формальными: всегда связанные с действием, они логически структурируют это действие вместе с сопровождающими его словами, но они совершенно не заключают в себе возможности строить логическую речь независимо от действия. Так, например, классификацию в конкретном примере с бусинками ребенок понимает, начиная с 7—8 лет (см. выше), тогда как задачу того же типа, но выраженную в вербальном тексте, он сможет решить лишь значительно позднее (ср. с одним из тестов Бурта: «Некоторые цветы в моем букете желтые», — говорит мальчик своим сестрам. Первая отвечает: «Тогда все цветы желтые»; «Часть желтых», — отвечает вторая, а третья говорит: «Никакие». Кто из сестер прав?»).

И даже более того. У одного и того же ребенка одни и те же «конкретные» умозаключения, ведущие к идее сохранения целого, к транзитивности равенств ( А = В = С ) или различий ( А < В < С… ), могут оказаться легко доступными в какой-то одной определенной системе понятий (такой, например, как количество материи) и лишенными какого бы то ни было смысла в другой системе понятий (например, такой, как вес). С этой точки зрения представляется особенно неправомерным говорить об овладении формальной логикой до конца периода детства, пока «группировки» относятся только к определенным типам конкретных понятий (т. е. осмысленных действий), которые они действительно структурируют. Но структурирование других типов конкретных понятий, интуитивная природа которых более сложна, поскольку они опираются еще и на другие действия, требует такой перестройки этих «группировок», которая допускала бы смещение действий во времени.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Пиаже Жан читать все книги автора по порядку

Пиаже Жан - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Психология интеллекта отзывы


Отзывы читателей о книге Психология интеллекта, автор: Пиаже Жан. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x