Эдвард Боно - Использование латерального мышления
- Название:Использование латерального мышления
- Автор:
- Жанр:
- Издательство:Питер Паблишинг
- Год:1997
- Город:Санкт-Петербург
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эдвард Боно - Использование латерального мышления краткое содержание
Эдвард де Боно. «Использование латерального мышления»
Хотя эти краткие резюме как бы разбивают проблему на части, тем не менее все главы книги связаны тремя основными темами, являющимися исходными принципами нешаблонного мышления.
1. Ограниченность шаблонного мышления в качестве метода выработки новых идей.
2. Использование нешаблонных процессов для получения новых идей.
3. Цель нешаблонного мышления — выработка новых идей, которым следует быть более простыми, глубокими и эффективными.
Технические приемы, предложенные для стимулирования рождения новых идей, возможно, покажутся крайне искусственными, ибо естественный способ мышления — шаблонный, логический.
До тех пор пока нешаблонное мышление не вошло в привычку, сознательное применение этих искусственных приемов совершенно необходимо, так как это единственный способ повернуть поток идей с естественного пути наибольшей вероятности.
Одно из основных достоинств нешаблонного мышления заключается в том, что его стремление к простоте новых идей обеспечивает его доступность и независимость от уровня образования.
Необходимость применения нешаблонного мышления связана не с семантикой слов, а продиктована функциональным строением человеческого мозга, определяющим паттерны мышления. Все эти аспекты будут рассмотрены в будущем труде. Цель же данного исследования состоит в том, чтобы рассмотреть полезность нешаблонного мышления, которая не зависит от своего происхождения.
Использование латерального мышления - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Описание можно упростить, если фигуру разделить не на Т-образные, а на 1-образные элементы, как это показано на рис. 20. Взаимоотношение трех получившихся при этом 1-образных элементов очень простое. Разумеется, каждый из 1-образных элементов представляет собой два Т-образных элемента, соединенных по основаниям.
Чем более крупные элементы деления фигуры, тем проще их соотношения. Так, на смену основным Т-элементам приходят их стандартные соединения. В некоторых случаях большие блоки выполняют функции основных элементов деления без каких бы то ни было ссылок на то, что они составлены из Т-образных элементов.

Выше было высказано предположение, что, чем сложнее элементы деления, тем проще их соотношения; и наоборот, чем проще основные элементы, тем сложнее их соотношения.
Следовательно, необходимо поддерживать баланс между простотой составных элементов и простотой их соотношений. Создание стандартных блоков из основных элементов решает эту проблему, так как использует более крупные элементы, которые в то же время остаются простыми.
Таким образом, достигается простота в описании как составных элементов, так и их соотношений.
Стандартные блоки из основных Т-образных элементов весьма полезны в случае необходимости упрощения описания сложных фигур, однако в отличие от собственно Т-образных элементов такие блоки используются в описании только ограниченного числа случаев.
Гибкость и универсальная пригодность Т-образного элемента дает ему право на существование вне зависимости от того, сколько стандартных блоков возникло на его основе. Если вдруг будет забыт Т-образный элемент, то нехватка составленных из него блоков для объяснения фигур может затруднить описание. Чем проще элемент деления, тем шире он может быть использован, поэтому желательно всегда иметь в запасе в качестве знакомых фигур не только основной Т-образный элемент, но и его сочетания в более крупные блоки.
Понять незнакомую ситуацию — дело довольно трудное, даже в тех случаях, когда есть возможность исследовать всю ситуацию целиком, а имеющиеся в наличии знакомые фигуры могут быть опробованы в знакомых соотношениях. Но еще более трудно понять ситуацию тогда, когда часть ее скрыта и недоступна исследованию, что нередко объясняется несоответствием приборов и методов исследования предъявляемым им требованиям. Приборы есть не что иное, как устройства для преобразования какого-то явления, недоступного органам чувств, в форму, доступную для восприятия. В других случаях часть незнакомой ситуации может оказаться недоступной для исследования потому, что необходимые для этого усилия на каким-то причинам нельзя произвести.
Случается также, что какая-то часть ситуации просто не в состоянии предоставить информацию.
Каковы бы ни были причины недоступности ситуации, необходимо попытаться понять всю ситуацию целиком путем тщательного изучения того, что доступно исследованию. Для объяснения скрытой части ситуации строятся пробные догадки, предположения и гипотезы.
На рис. 21показана геометрическая фигура, часть которой скрыта от нас бесформенным пятном.
Предположим, что данная фигура столь же проста, как и прежние фигуры.
На основании тщательного исследования и измерения тех участков фигуры, которые выступают из-под пятна, можно строить различные догадки и предположения р том, что представляет собой вся фигура. Можно прибегнуть к различным сочетаниям Т-образного элемента, и если одно из сочетаний совпадает с видимой частью фигуры, то оно, возможно, совпадет со всей фигурой.


На рис. 22показано удачное сочетание Т-образных элементов, которое полностью совпало бы с выступающими частями предыдущей фигуры. Испробовав все прочие возможные комбинации Т-образных элементов, мы убедимся, что предложенное на рис. 22сочетание является единственно возможным для объяснения фигуры на рис. 21. По-видимому, такая комбинация является точным отображением скрытой под пятном фигуры. Если удалить пятно, то под ним откроется именно эта фигура.
Последнее заключение относится к такому виду естественного предположения, которым обычно сопровождается появление гипотез. И хотя только одним сочетанием Т-образных элементов можно правильно объяснить форму замазанной пятном фигуры, однако пот никаких оснований предполагать, что эта фигура обязательно должна делиться на Т-образные элементы. В данном случае Т-образный элемент оказался полезным элементом описания, который, возможно, был единственным имеющимся в наличии знакомым элементом. Однако ни одно из этих обстоятельств но меняет его произвольного характера. Этот элемент существует только ради удобства. Форма новой фигуры не обязательно должна соответствовать чисто произвольному способу описания ситуации. Однако вера в полезность Т-образного элемента, испытанная на практике, может легко навести на мысль о необходимости такого соответствия. Вполне возможно, что другой человек, имея в наличии другую знакомую фигуру, решит, что замазанная фигура должна быть объяснена именно с помощью этой известной ему фигуры.
Действительно, каждый человек формулирует единственно возможную гипотезу, используя имеющиеся знакомые фигуры (в данном случае Т-образный элемент). Тем не менее такая гипотеза, сколь бы точно она ни формулировалась на языке Т-образных элементов, всего лишь предполагает (но не доказывает), что данная фигура должна иметь именно такую форму.
Единственным доказательством гипотезы является ее полезность, и, пока полезность продолжает иметь место, гипотеза остается в силе. Однако даже полезность не должна препятствовать поискам лучшей гипотезы, которая, возможно, будет использовать при описании другие знакомые фигуры.
Когда мы описывали вышеприведенные фигуры, полностью доступные восприятию, мы могли использовать любой метод описания, однако, когда мы имеем дело с частично закрытыми фигурами, любая примененная в этом случае гипотеза может оказаться непригодной.
Одной из главных задач мышления является необходимость постоянного уяснения разного рода незнакомых ситуаций. Как правило, имеется некоторая фигура, которую требуется уяснить с помощью сочетания уже знакомых фигур. Сочетание знакомых фигур всегда направлено к какому-то практическому результату, в котором постоянно используется все увеличивающийся набор знакомых фигур и их соотношений.
Читать дальшеИнтервал:
Закладка: