В Бессонов - Радиоэлектроника для начинающих (и не только)

Тут можно читать онлайн В Бессонов - Радиоэлектроника для начинающих (и не только) - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_radio, издательство Солон-Р, год 2001. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Радиоэлектроника для начинающих (и не только)
  • Автор:
  • Жанр:
  • Издательство:
    Солон-Р
  • Год:
    2001
  • Город:
    Москва
  • ISBN:
    5-93455-112-4
  • Рейтинг:
    2.93/5. Голосов: 551
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

В Бессонов - Радиоэлектроника для начинающих (и не только) краткое содержание

Радиоэлектроника для начинающих (и не только) - описание и краткое содержание, автор В Бессонов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Данной книгой автор намерен вовлечь в интереснейший мир радиоэлектроники новых юных поклонников этого творчества. Подача материала производится от простого к сложному. Использован многолетний опыт преподавания в радиокружке.
Книга рассчитана на учащихся 5—11 классов, учащихся колледжей, техникумов, студентов ВУЗов, а также на начинающих радиолюбителей.

Радиоэлектроника для начинающих (и не только) - читать онлайн бесплатно полную версию (весь текст целиком)

Радиоэлектроника для начинающих (и не только) - читать книгу онлайн бесплатно, автор В Бессонов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Опытную проверку логики действия элементов 2И-НЕ микросхемы можно начать с любого из них, предположим, с первого — DD1.1 с выводами 1–3 (рис. 7.10).

Рис 710 а б в Опытная проверка логики действия элемента 2ИНЕ К155ЛАЗ - фото 289

Рис. 7.10, а, б, в . Опытная проверка логики действия элемента 2И-НЕ( К155ЛАЗ)

Сначала один из входных выводов, например вывод 2 , соедините с общей минусовой линией, а вывод 1 — с плюсовой, но через резистор сопротивлением 11,5 кОм (на рис. 7.10, а — R1). К выходному выводу 3 элемента DD1.1 подключите вольтметр PV1. Вольтметр покажет напряжение, равное примерно 3,54 В, т. е. соответствующее высокому уровню.

Затем измерьте вольтметром напряжение на входном выводе 1 , он также покажет высокий уровень напряжения. Отсюда вывод: когда на одном из входов элемента 2И-НЕ высокий уровень напряжения, а на другом низкий, на выходе будет высокий уровень напряжения.

Теперь и входной вывод 2 элемента соедините через резистор сопротивлением 11,5 кОм с плюсовой линией и одновременно проволочной перемычкой — с общей (рис. 7.10, б). Измерьте напряжение на выходном выводе. На нем, как и в предыдущем случае, будет высокий уровень напряжения. Следя за стрелкой авометра, удалите проволочную перемычку, чтобы и на втором входе элемента появился высокий уровень напряжения. На выходе элемента будет напряжение около 0,3 В, соответствующее низкому уровню. Следовательно, элемент из единичного состояния переключился в нулевое.

Той же проволочной перемычкой замкните первый вход на общую линию. На выходе при этом сразу появится высокий уровень напряжения. А если любой из входных выводов периодически замыкать на общую линию, как бы имитируя подачу на него напряжения низкого уровня, с такой же частотой следования на выходе элемента будут появляться электрические импульсы и будет колебаться стрелка вольтметра.

О чем говорят проведенные опыты? Они подтверждают логику действия элемента 2И-НЕ, проверенную ранее на его электрическом аналоге: при подаче напряжения высокого уровня на оба входа на выходе элемента появляется напряжение низкого уровня.

Еще один опыт: отключите оба входных вывода элемента от других деталей и проводников. На выходе будет низкий уровень напряжения. Так и должно быть, потому что неподключение входных выводов равнозначно подаче на них высокого уровня напряжения и, следовательно, установке элемента в нулевое состояние.

Не забывайте в будущем об этой особенности логических элементов ТТЛ микросхем!

Следующий опыт — проверка действия того же логического элемента 2И-НЕ при включении его инвертором, т. е. как элемент НЕ. Замкните между собой оба входных вывода и через резистор сопротивлением 11,5 кОм соедините их с плюсовой линией питания (рис. 7.10, в ). Вольтметр покажет низкий уровень напряжения. Не отключая резистора от этой линии, замкните объединенный вход на минусовую линию (показано штриховыми стрелками) и одновременно проследите за реакцией вольтметра. Он покажет высокий уровень напряжения. Таким образом, вы убедитесь, что сигнал на выходе инвертора всегда противоположен входному.

Теперь давайте рассмотрим принципиальную электрическую схему логического элемента 2И-НЕ. Он состоит из четырех транзисторов структуры n-р-n , трех диодов и пяти резисторов (рис. 7.11).

Рис 711 Принципиальная схема логического элемента 2ИНЕ Связь между - фото 290

Рис. 7.11. Принципиальная схема логического элемента 2И-НЕ

Связь между транзисторами непосредственная. Резистор R н, показанный штриховыми линиями, символизирует нагрузку, подключенную к выходу элемента. Подобные электронные устройства цифровой техники называют микросхемами транзисторно-транзисторной логики, или сокращенно ТТЛ. В этом отражен тот факт, что входные логические операции (или, как часто говорят — входную логику) выполняет многоэмиттерный транзистор (первая буква Т), усиление и инверсию сигнала — тоже транзисторы (вторая буква Т).

Входной транзистор VT1, включенный по схеме с общей базой, — двухэмиттерный. Причем эмиттеры соединены с общим проводом питания через диоды VD1, VD2 — они защищают транзистор от случайного попадания на эмиттеры напряжения отрицательной полярности. Транзистор VT2 образует усилитель с двумя нагрузками: эмиттерной (резистор R3) и коллекторной (резистор R2). Снимаемые с них противофазные сигналы (противоположные по уровню: если на коллекторе высокий уровень напряжения, на эмиттере — низкий) поступают на базы выходных транзисторов VT3 и VT4. Таким образом, выходные транзисторы во время работы всегда находятся в противоположных состояниях — один закрыт, а второй в это время открыт. Этому способствует и диод VD3.

При наличии на одном или обоих входах элемента напряжения низкого уровня (например, при соединении их с общим проводом) транзистор VTI будет открыт и насыщен, транзисторы VT2 и VT4 закрыты, а транзистор VT3 открыт и через него, диод VD3 и нагрузку R нтечет ток — элемент в единичном состоянии. В том же случае, когда на оба входа будет подан высокий уровень напряжения, транзистор VT1 закроется, а транзисторы VT2 и VT4 откроются и тем самым закроют транзистор VT3. При этом ток через нагрузку практически прекратится, так как элемент примет нулевое состояние.

Низкий уровень напряжения на выходе логического элемента равен напряжению на коллекторе открытого транзистора VT4 и не превышает 0,4 В. Высокий же уровень напряжения на выходе логического элемента (когда транзистор VT4 закрыт) меньше напряжения источника питания на значение падения напряжения на транзисторе VT3 и диоде VD3 — не менее 2,4 В. Фактически же напряжение логических уровней низкого и высокого на выходе элемента зависит от сопротивления нагрузки и может несколько отличаться от указанного выше.

Переход элемента из единичного состояния в нулевое происходит скачкообразно при переходе его входного напряжения через значение около 1,2 В, называемое пороговым.

При монтаже аппаратуры для повышения устойчивости работы микросхем их свободные входы должны быть подключены к источнику питания микросхемы через резистор с сопротивлением 1 кОм. К одному резистору допускается подключение не более 20 свободных входов. Для защиты от низкочастотных помех — необходимо предусмотреть установку и подключение к шинам питания на плате оксидных конденсаторов (из расчета не менее 0,1 мкФ на один корпус микросхемы). Для защиты от высокочастотных помех — керамические конденсаторы (емкость не менее 2000 пФ на один корпус микросхемы). Рекомендуется размещать на площади печатной платы из расчета один конденсатор на группу не более десяти микросхем.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


В Бессонов читать все книги автора по порядку

В Бессонов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Радиоэлектроника для начинающих (и не только) отзывы


Отзывы читателей о книге Радиоэлектроника для начинающих (и не только), автор: В Бессонов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x