Эрл Гейтс - Введение в электронику
- Название:Введение в электронику
- Автор:
- Жанр:
- Издательство:Феникс
- Год:1998
- Город:Ростов-на-Дону
- ISBN:5-222-00417-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрл Гейтс - Введение в электронику краткое содержание
Введение в электронику - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
2. Какие параметры нельзя проверить, используя омметр для проверки стабилитрона?
3. Нарисуйте схему, показывающую подключение стабилитрона для проверки напряжения стабилизации.
4. Опишите, как с помощью схемы из вопроса 3 определить, правильно ли работает стабилитрон.
5. Как можно определить катод стабилитрона с помощью омметра?
РЕЗЮМЕ
• Стабилитроны рассчитаны для работы при напряжениях больших, чем напряжение пробоя (максимальное обратное напряжение).
• Напряжение пробоя стабилитрона определяется удельным сопротивлением диода.
• Стабилитроны выпускаются с определенным напряжением стабилизации.
• Мощность, рассеиваемая стабилитроном, зависит от температуры и длины выводов.
• Схематическое обозначение стабилитрона следующее:
• Стабилитроны выпускаются в таких же корпусах, что и диоды.
• Стабилитроны с напряжением стабилизации 5 вольт или более имеют положительный температурный коэффициент напряжения стабилизации.
• Стабилитроны, которые имеют напряжение стабилизации менее 4 вольт, имеют отрицательный температурный коэффициент напряжения стабилизации.
• Стабилитроны используются для стабилизации или регулировки напряжения.
• Регуляторы на основе стабилитронов обеспечивают постоянное выходное напряжение, несмотря на изменения входного напряжения или выходного тока.
• Стабилитроны могут быть проверены на разрыв цепи, короткое замыкание или утечку с помощью омметра.
• Для того чтобы определить, работает ли стабилитрон при заданном напряжении стабилизации, может быть выполнена регулировочная проверка.
Глава 21. САМОПРОВЕРКА
1. Объясните, как работает стабилитрон в цепи регулировки напряжения.
2. Опишите процесс проверки напряжения стабилизации стабилитрона.
Глава 22. Биполярные транзисторы
ЦЕЛИ
После изучения этой главы студент должен быть в состоянии:
• Описать конструкцию транзистора и две его различные конфигурации.
• Нарисовать схематические обозначения n-p-n и р-n-р транзисторов и пометить их выводы.
• Перечислить способы классификации транзисторов.
• Перечислить функции транзистора, используя справочник и условное обозначение.
• Перечислить распространенные корпуса транзисторов.
• Объяснить, как проверить транзистор с помощью омметра и с помощью прибора для проверки транзисторов.
• Описать процесс подбора замены транзистора.
В 1948 году в лабораториях фирмы Bell был изготовлен первый работающий транзистор. Транзистор — это состоящее из трех элементов и двух р-n переходов устройство, используемое для управления электрическим током.
Изменяя величину напряжения, приложенного к трем элементам, можно управлять величиной тока через транзистор и использовать его для усиления, генерации или переключения. Этим применениям посвящены главы 26, 27 и 28 .
Когда к полупроводниковому диоду добавляется третий слой полупроводника, получается устройство, которое может усиливать мощность или напряжение. Это устройство называется биполярным транзисторомили просто транзистором. Далее мы везде будем использовать термин транзистор.
Транзистор, как и диод, может быть изготовлен из германия или кремния, но кремний более популярен. Транзистор состоит из трех областей с чередующимся типом проводимости (по сравнению с двумя у диода). Эти три области могут быть расположены двумя способами.
В первом случае материал р -типа расположен между двумя слоями материала n -типа, образуя n-p-n транзистор (рис. 22-1). Во втором случае слой материала n -типа расположен между двумя слоями материала р -типа, образуя р-n-р транзистор (рис. 22-2).
У транзисторов обоих типов средняя область называется базой, а внешние области называются эмиттером и коллектором.
Рис. 22-1. n-p-nтранзистор .
Рис. 22-2. р-n-ртранзистор.
22-1. Вопросы
1. Чем конструкция транзистора отличается от конструкции диода?
2. Какие существуют два типа транзисторов?
3. Как называются три части транзистора?
4. Нарисуйте схематические обозначения n-p-n и р-n-р транзисторов и обозначьте их выводы.
5. Для чего используются транзисторы?
Транзисторы классифицируются по следующим параметрам:
1. По типу проводимости ( n-p-n или р-n-р ).
2. По используемому материалу (германий или кремний).
3. По основному назначению (высокой или низкой выходной мощности, переключательные или высокочастотные).
Большинство транзисторов идентифицируются по условному обозначению. Условное обозначение состоит из пяти элементов и содержит информацию об исходном материале транзистора, его назначении, классификации, номере разработки. Эти символы идентифицируют устройство как транзистор и показывают, что он имеет 2 р-n перехода.
Корпуса служат для защиты транзистора и обеспечивают возможность электрического подсоединения к эмиттеру, базе и коллектору. Корпус также служит для отвода тепла или площадью, с которой тепло может излучаться, удаляя избыточное тепло от транзистора и предотвращая возможность теплового повреждения. Существует много различных корпусов, охватывающих широкую область применений (рис. 22-3).
Рис. 22-3. Различные корпуса транзисторов.
Корпуса транзисторов отличаются размерами и конфигурацией. Некоторые часто встречающиеся корпуса транзисторов показаны на рис. 22-4.
Вследствие большого разнообразия корпусов транзисторов очень трудно предложить общее правило для идентификации выводов эмиттера, базы и коллектора на каждом устройстве. Для этого лучше обратиться к инструкции, предоставляемой производителем, или к справочнику.
Рис. 22-4. Типичные корпуса транзисторов.
22-2. Вопросы
1. Как классифицируются транзисторы?
2. Какие символы используются для классификации транзисторов?
3. Для чего служат корпуса транзисторов?
4. Как обозначаются корпуса транзисторов?
5. Как определить, какой вывод у транзистора является базой, эмиттером или коллектором?
Диод является выпрямителем, а транзистор — усилителем. Транзистор может использоваться различными способами, но основной его функцией является усиление сигналов.
К транзистору должно быть правильно приложено напряжение смещения для того, чтобы области эмиттера, базы и коллектора взаимодействовали должным образом.
При правильно приложенном напряжении смещения эмиттерный переход транзистора смещен в прямом направлении, а коллекторный переход — в обратном. Правильно приложенное напряжение смещения на транзистор типа n-р-n показано на рис. 22-5.
Читать дальшеИнтервал:
Закладка: