Александр Кульский - КВ-приемник мирового уровня? Это очень просто!
- Название:КВ-приемник мирового уровня? Это очень просто!
- Автор:
- Жанр:
- Издательство:Наука и техника
- Год:2007
- Город:Санкт-Петербург
- ISBN:5-7931-0096-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Кульский - КВ-приемник мирового уровня? Это очень просто! краткое содержание
Да и микросхемы большого уровня интеграции, поверьте, мало чем могут помочь для развития у радиолюбителя умения «читать» любые схемы… Необходима такая область, такое направление электроники, которое, обеспечивая накопления бесценного опыта в конструировании, имело бы и самостоятельную ценность.
Такая область существует — это создание высокочувствительных (как коротковолновых, так и всеволновых) приемников, основанных на современной профессиональной идеологии создания подобной аппаратуры.
От азов электроники и радиотехники — к современному высокочувствительному супергетеродинному приемнику с двойным преобразованием частот и верхней первой ПЧ… Оснащенному высокоэффективной цифровой шкалой настройки — вот о чем эта книга! Те, кто хочет самостоятельно изготовить и отладить приемник мирового уровня — эта книга для вас!
КВ-приемник мирового уровня? Это очень просто! - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

«А»:…И все?
«Н»:«Чего же боле… Что я могу еще сказать?»
«А»:Ты, Незнайкин, нарисовал совершенно правильный график! И рассуждал ты при этом достаточно верно, но до определенного момента. А вот дальше…
«Н»:Ну, ты говоришь прямо-таки загадками! Здесь рядом я пририсовал небольшую принципиальную схемку. Я даже обозначил на ней направление течения тока в положительный и в отрицательный полупериоды!
«А»:Действительно, в моменты, когда напряжение на электродах источника (генератора) переменного напряжения будет равно НУЛЮ, то и ток будет равен НУЛЮ!
«Н»:А когда на электродах будет максимальное напряжение, то и ток будет МАКСИМАЛЬНЫМ! Так что же тут неправильного?
«А»:Не кипятись, ты не чайник! Остынь! Хотя, если исходить из лексикона компьютерщиков, то ты именно ЧАЙНИК — т. е. НАЧИНАЮЩИЙ!
Вспомни лучше знаменитый анекдот про человека, который искал потерянное золотое кольцо ночью рядом с фонарем. Хотя потерял его совершенно в другом месте! Помнишь его главный аргумент в отношении неадекватного места поиска?
«Н»:Он сказал, что ищет кольцо под фонарем потому, что здесь светлее искать! Но при чем эта история к нашим делам?…
«А»:Так ведь ты сделал сейчас то же самое, дружище Незнайкин! Ты рассмотрел случай, когда в цепи переменного тока находится АКТИВНОЕ СОПРОТИВЛЕНИЕ!
«Н»:…И то слава Богу! А что же там может находиться еще?
«А»:А вот хотя бы такая штуковина, которую я сейчас изобразил (рис. 2.4).

«Н»:Я видел мельком на принципиальных схемах такие изображения во множестве. Но «видеть» и «знать» — это ведь не одно и то же!..
«А»:…Рядом с изображением я проставил английскую букву С! Этот элемент — один из важнейших в электронике. И называется CAPASITOR — КОНДЕНСАТОР!
«Н»:А как он устроен?
«А»:Расположи две металлические пластинки на некотором расстоянии друг от друга. Подсоедини к каждой из них металлическую проволоку. Получишь элементарный конденсатор!
«Н»:А что он нам может дать?
«А»:Конденсатор — вещь замечательная! Соберем простейшую цепь (рис. 2.5), содержащую конденсатор. Замкнем переключатель S . На обкладках (пластинах) конденсатора установится тот же потенциал, что и на батарейке. А ток будет течь?

«Н»:По-моему, нет! Ведь между пластинами конденсатора — обрыв! Разве нет?
«А»:Не совсем… Дополним нашу схемку! Здесь я изобразил те самые пластины, снабдив их электродами. Как видишь, расстояние между ними равно r . Площадь каждой пластины равна D . А теперь скажи мне, что это за пунктирные стрелки я изобразил?
«Н»:Пока что не догадываюсь.
«А»:Это ни что иное, как СИЛОВЫЕ ЛИНИИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ! А вот теперь, Незнайкин, внимание. То, что я тебе сейчас расскажу, в школьных учебниках не упоминается.
«Н»:Это Спец рассказал?
«А»:Да, он обратил мое внимание на тот факт, что в конденсаторе имеет место удивительный физический эффект! Смотри, пластина А присоединена к отрицательному электроду. Это означает, что в объеме кристаллической решетки пластины А «растекаются» ИЗБЫТОЧНЫЕ электроны, поступающие на нее от МИНУСА батарейки.
Но, подсоединенная к ПЛЮСУ пластина В оказывает на них удивительное влияние! Электроны, накапливающиеся на пластине А , как-бы перестают «замечать» друг-друга! Их взаимоотталкивание становится минимальным!
«Н»:Как это можно объяснить?
«А»:А так, что сферообразные электростатические поля электронов преобразуются в нитевидные! Теперь они достигают пограничного слоя пластины В . По масштабам микромира, пластина В находится на колоссальном расстоянии от пластины А !
Эти электростатические поля электронов пластины А воздействуют через межпластинчатый промежуток с атомами кристаллической решетки пластины Б , которые перед этим «потеряли» свои электроны.
«Н»:Поскольку они ушли с пластины В к ПЛЮСУ батарейки!..
«А»:Следовательно, при данном напряжении U «плотность» электронов на пластине А высока. На этой пластине размещается электрический заряд, который при определенных условиях способен… преобразоваться в ток!
Но и это еще не все! Представь себе, что мы поместили эти пластины в космическом пространстве, иначе говоря — в вакууме! Тогда условно обозначим ПЛОТНОСТЬ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ, как количество силовых линий, отнесенных к единице площади поверхности. И в случае, если между пластинами А и В — вакуум, примем, что эта плотность равна некоторой условной единице…
«Н»:Не возражаю…
«А»:А теперь вернемся на Землю. Поместим между пластинами А и В листик из слюды. Великолепный изолятор, между прочим! В этом случае плотность электростатического поля возрастает в ДЕВЯТЬ РАЗ!
«Н»:Это предельное значение?
«А»:Нет, это далеко не предел! Есть такой хитрый диэлектрик — ТИТАНАТ БАРИЯ. Так в нем плотность электрического поля возрастает в ДЕСЯТКИ ТЫСЯЧ РАЗ!
«Н»:Ну и дела! Но не припомню, чтобы мне встречалось такое понятие, как плотность электрического поля…
«А»:Потому что это больше физический, а не технический термин. А такое понятие, как ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ встречал?
«Н»:Да что-то такое слышал.
«А»:Так эти два понятия — синонимы! А вот и формула, которая является основной для расчета емкости конденсатора:

здесь S — площадь пластин в см 2, а — расстояние в сантиметрах, ε — диэлектрическая проницаемость.
«Н»:А нам чем он может помочь? Я имею в виду именно конденсатор?…
«А»:Сейчас… Смотри сюда. Справа я зарисовал уже знакомую нам эпюру (график изменения во времени) напряжения на обкладках конденсатора. А теперь представим себе, как пройдет эпюра токов (рис. 2.6)?

«Н»:А исходить будем из эпюры напряжений?
«А»:Естественно! Итак, рассмотрим участок АВ . В момент А напряжение генератора МАКСИМАЛЬНО. На обкладках конденсатора оно такое же. Но это ведь означает, что все электроны, которые могли быть «втиснуты» источником на одну из пластин — уже там!
Читать дальшеИнтервал:
Закладка: