Борис Крук - ...И мир загадочный за занавесом цифр. Цифровая связь

Тут можно читать онлайн Борис Крук - ...И мир загадочный за занавесом цифр. Цифровая связь - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_radio, издательство Горячая линия-Телеком, год 2004. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    ...И мир загадочный за занавесом цифр. Цифровая связь
  • Автор:
  • Жанр:
  • Издательство:
    Горячая линия-Телеком
  • Год:
    2004
  • Город:
    Москва
  • ISBN:
    5-93517-168-6
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Борис Крук - ...И мир загадочный за занавесом цифр. Цифровая связь краткое содержание

...И мир загадочный за занавесом цифр. Цифровая связь - описание и краткое содержание, автор Борис Крук, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга в занимательной форме рассказывает о проблемах цифровой связи. Открывает удивительный мир двух цифр: 0 и 1, с помощью которых можно «спрятать» в электронный «шкафчик» многотомные издания А. Дюма, разгадать тайну знаменитой Джоконды, «законсервировать» или передать на расстояние речь, музыку, изображение. Знакомит с линиями передачи цифровой информации, цифровыми многоканальными системами передачи.
Для любознательных читателей, для молодежи, выбирающей профессию, и всех, кто интересуется современными телекоммуникациями, будет полезна студентам высших и средних учебных, заведений.

...И мир загадочный за занавесом цифр. Цифровая связь - читать онлайн бесплатно полную версию (весь текст целиком)

...И мир загадочный за занавесом цифр. Цифровая связь - читать книгу онлайн бесплатно, автор Борис Крук
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Описанная память имеет один существенный недостаток: в ней нельзя стирать информацию и записывать новую. Можно только выбросить микросхему с ненужной информацией.

Согласитесь, не слишком удобно.

Какой же должна быть память, чтобы вместо одних комбинаций 0 и 1 в нее можно было легко помещать другие комбинации этих цифр? Интуитивно ясно, что вся память должна состоять из отдельных ячеек, причем в каждую из них можно было бы свободно записать либо 0, либо 1. Значит, ячейка памяти — это устройство, которое по сигналам "записать 0" и "записать 1"принимает одно из двух состояний: 0 и 1.

Принцип работы ячейки памяти поясняет рисунок, на котором в качестве элементов, обеспечивающих два устойчивых состояния, использованы электромеханические реле — электромагниты со специальными контактами.

Контакты реле 1 дублируют кнопку Запись 0 и когда через электромагнит - фото 39 Контакты реле 1 дублируют кнопку Запись 0 и когда через электромагнит - фото 40

Контакты реле 1 "дублируют" кнопку "Запись 0" и, когда через электромагнит данного реле ток не протекает, остаются замкнутыми. Но благодаря этому ток имеет возможность течь через электромагнит реле 2. Якорь этого реле, следовательно, притянется к электромагниту и своим штифтом будет поддерживать в разомкнутом состоянии контакты, дублирующие кнопку "Запись 1". Ясно, что цепь тока, в которую включен левый электромагнит, будет разорвана и ток через электромагнит протекать не сможет. Лампочка, также включенная в эту цепь, гореть не будет. Примем, как и раньше, что ячейка памяти находится в состоянии "0". В нем она может находиться как угодно долго, пока мы сами не захотим его изменить. Но сколько бы мы ни нажимали на кнопку "Запись 0", состояние ячейки памяти не изменится, поскольку кнопка "Запись 0" все время находится как бы в "нажатом" положении благодаря замкнутым контактам реле 1.

Иное дело, если нажать кнопку "Запись 1". Тогда замкнется цепь левого электромагнита; через него и лампочку потечет ток; лампочка загорится, т. е. ячейка памяти перейдет в состояние "1". Удержать ячейку памяти в данном состоянии можно, только обеспечив постоянное протекание тока через лампу и левый электромагнит. Это осуществляется автоматически: при протекании тока через реле 1 его якорь притянется к электромагниту и будет поддерживать контакты в разомкнутом состоянии. Тем самым оборвется цепь тока через правый электромагнит. Якорь реле 2 под действием пружины "отлипнет" от электромагнита и перестанет размыкать контакты, дублирующие кнопку "Запись 1". Теперь смело отпускайте кнопку — цепь тока через левый электромагнит и лампу не разорвется, она будет существовать благодаря замкнутым контактам реле 2.

Ячейка памяти будет находиться в состоянии "1" до тех пор, пока мы не нажмем снова на кнопку "Запись 0". Цепочка рассуждений нам уже известна: при этом сработает реле 2 и отключит ток в лампе и реле 1; обесточенное реле 1 отпустит свои контакты и тем самым обеспечит протекание тока через реле 2, которое, в свою очередь, "поддерживает" реле 1 в обесточенном состоянии. Надеемся, вы уже настолько освоились, что не запутались.

Нажимая любую из кнопок "Запись 0" или "Запись 1", можно записать в ячейку памяти цифры 0 или 1, стирая автоматически старую запись. Пара электромеханических реле используется в ячейке для "поддержания" друг друга в том состоянии, которое было определено нажатием соответствующей кнопки.

Устройства, которые могут находиться в одном из двух устойчивых состояний и способны скачком переключаться из одного состояния в другое при внешнем воздействии, получили название триггеров (от английского trigger — спусковой крючок огнестрельного оружия).

Триггерные ячейки памяти выполняются, конечно же, не на электромеханических реле. К помощи последних мы прибегли лишь для более простой и наглядной иллюстрации принципа работы такой памяти. Чтобы познакомиться с современными ячейками памяти, вернемся вновь к истории зарождения электроники.

…В 1912 г. американская полиция арестовала группу мошенников, пытавшихся распродать акции своей фирмы, не выпускавшей никакой продукции. Основатель фирмы утверждал на суде, что он владеет устройством (по мнению специалистов, странным и совершенно ни к чему не пригодным), которое в будущем позволит обмениваться человеческими голосами через Атлантический океан (что, по общему мнению, было сущей нелепицей!). Этим человеком был доктор физики Ли де Форест, а странным устройством являлось его гениальное изобретение — вторая "волшебная" лампа. Спустя почти полвека, а точнее в 1956 г., за это изобретение Ли де Форест будет удостоен высшей награды Франции — ордена Почетного легиона.

Ли де Форест предложил ввести в хорошо известную всем лампу Флеминга еще один дополнительный электрод в виде сетки и расположить его между анодом и катодом. Именно этот третий электрод и вызвал революцию в радиотехнике: оказалось, что небольшие изменения напряжения на сетке вызывали значительно большие изменения тока в цепи анода. Электронные лампы с тремя электродами (триоды) стали применяться для усиления очень слабых радиосигналов.

Кроме того, появилась возможность полностью останавливать поток электронов, подавая на сетку отрицательное напряжение: электроны, обладая отрицательным зарядом, отталкивались от отрицательно заряженной сетки. Тока в цепи анода в этом случае не было и лампа оказывалась запертой. И наоборот, подавая на сетку положительное напряжение, удавалось максимально увеличить скорость потока электронов и получить максимальный ток в цепи анода. Лампа в этом случае оказывалась полностью открытой.

Свойство триода быть полностью открытым или закрытым позволило построить триггерные ячейки памяти, в которых каждый из двух триодов управлял сеткой другого — тем самым поддерживалось устойчивое состояние триггера.

Впервые идея создания электронного триода была высказана еще в 1906 г. Фостером. С тех пор этот год и считается датой рождения трехэлектродной лампы. Потребовалось более 40 лет, чтобы на смену громоздким, поглощающим много энергии и выделяющим большое количество тепла, дорогим и ненадежным электронным лампам пришли более экономичные и более миниатюрные приборы.

В 1947 г. сотрудники лаборатории компании "Белл" Уильям Шокли, Джон Бардин и Уолтер Бретони изобрели транзистор, выполнявший те же функции, что и электронный триод, но использовавший свойства полупроводников. Триггерные ячейки памяти на лампах спали повсеместно заменяться триггерными ячейками, выполненными на транзисторах.

Первую интегральную микросхему с ячейками памяти на транзисторах разработали уже в конце 50-х годов два американских инженера: Дж. Килби из компании "Texas instruments" и Роберт Нойс, основавший впоследствии корпорацию "Intel".

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Борис Крук читать все книги автора по порядку

Борис Крук - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




...И мир загадочный за занавесом цифр. Цифровая связь отзывы


Отзывы читателей о книге ...И мир загадочный за занавесом цифр. Цифровая связь, автор: Борис Крук. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x