Борис Крук - ...И мир загадочный за занавесом цифр. Цифровая связь

Тут можно читать онлайн Борис Крук - ...И мир загадочный за занавесом цифр. Цифровая связь - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_radio, издательство Горячая линия-Телеком, год 2004. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    ...И мир загадочный за занавесом цифр. Цифровая связь
  • Автор:
  • Жанр:
  • Издательство:
    Горячая линия-Телеком
  • Год:
    2004
  • Город:
    Москва
  • ISBN:
    5-93517-168-6
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Борис Крук - ...И мир загадочный за занавесом цифр. Цифровая связь краткое содержание

...И мир загадочный за занавесом цифр. Цифровая связь - описание и краткое содержание, автор Борис Крук, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга в занимательной форме рассказывает о проблемах цифровой связи. Открывает удивительный мир двух цифр: 0 и 1, с помощью которых можно «спрятать» в электронный «шкафчик» многотомные издания А. Дюма, разгадать тайну знаменитой Джоконды, «законсервировать» или передать на расстояние речь, музыку, изображение. Знакомит с линиями передачи цифровой информации, цифровыми многоканальными системами передачи.
Для любознательных читателей, для молодежи, выбирающей профессию, и всех, кто интересуется современными телекоммуникациями, будет полезна студентам высших и средних учебных, заведений.

...И мир загадочный за занавесом цифр. Цифровая связь - читать онлайн бесплатно полную версию (весь текст целиком)

...И мир загадочный за занавесом цифр. Цифровая связь - читать книгу онлайн бесплатно, автор Борис Крук
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
С равным правом можно применить и обратный код т е незакрашенному полю - фото 51

(С равным правом можно применить и "обратный" код, т. е. незакрашенному полю ставить 1, закрашенному — 0.)

Эту двоичную информацию — с виду она ничем не отличается от закодированной текстовой или речевой информации — можно записать в электронную память или передать на расстояние подобно тому, как передается двоичный код телеграмм. Правда, восстановленная по данной последовательности 0 и 1 картина будет отличаться от исходной. Однако если разбить изображение на достаточно большое число клеток (взяв, например, ширину клетки 0,5 мм или еще меньше), то можно добиться полного, как говорится, один к одному, сходства восстановленного изображения с оригиналом. Конечно, в этом случае двоичный код картины нам придется записывать на бумаге гораздо дольше: ведь он будет содержать в 50-100 раз большее число 0 и 1. Для того чтобы поместить в микросхему изображение размером всего лишь со спичечный коробок (4x5 см), объем ее памяти при ширине клеточки 0,5 мм должен составлять 8000 бит, а при ширине клеточки 0,1 мм — уже 200000 бит. Таким образом, более точное описание изображения требует больших информационных затрат. За качество, как всегда, приходится платить.

Обратите внимание, закодировать нашу картину двоичным кодом было весьма просто, поскольку мы имели дело с изображением, состоящим всего из двух цветовых градаций: поле каждой клеточки было условлено считать либо белым (0), либо закрашенным (1). А как быть с фотографией? Ну хотя бы с той, которую называем черно-белой. Ведь на ней вопреки названию имеются плавные переходы от белого цвета к черному. Как определить степень "яркости" той или иной клеточки? Дело осложняется еще и тем, что при разбиении фотографии на клеточки может оказаться, что яркость изображения даже внутри одной клеточки будет неодинаковой. Очевидно, чем меньше размеры клеточки, тем более однородной будет ее яркость. Если в клеточке размером 1 мм 2нарисовать пять черных линий (есть умельцы, которые умудряются на рисовом зернышке разместить целое стихотворение), то человеческий глаз легко их различит. Если же таких линий больше, скажем десять, то глаз не сможет их различить: все они сольются воедино и клеточка будет казаться однотонной. Это свойство глаза — различать определенное число линий на 1 мм — называется его разрешающей способностью. Ученые установили, что разрешающая способность человеческого глаза у разных людей колеблется от 5 до 10 линий на 1 мм. Это означает, что для фотографических изображений размер клеточки должен быть не больше 0,1х0,1 мм, т. е. на 1 мм 2изображения должно поместиться как минимум 100 таких клеточек. Только тогда можно считать яркость внутри клеточки всюду одинаковой.

— Но ведь на такого же размера клеточки мы разбивали и изображение, состоящее всего из двух тонов! — воскликнет наблюдательный читатель.

Правильно. Никакого особого отличия в разложении на отдельные элементы (клеточки) этих двух типов изображений нет. Разница заключается в другом. В первом случае было только две градации яркости (помните, поле либо белое, либо закрашенное?). Это и позволило нам сразу же применить двоичный алфавит: 0 и 1. Во втором же случае мы имеем дело с непрерывной шкалой изменения яркостей элементов изображения (от белого цвета до черного).

Как же поступить в этом случае? Экспериментально установлено, что для качественного воспроизведения художественной фотографии достаточно иметь (опять-таки из-за конечной разрешающей способности глаза) всего 10–20 градаций яркости, отличающихся друг от друга. (Не напоминает ли вам такая фотография картину, сложенную из отдельных элементарных площадок подобно детской мозаике?) Значит, весь диапазон изменения яркости элемента изображения следует разбить на требуемое число градаций. После этого номер каждой градации нетрудно представить в двоичной системе счисления. Для записи, скажем, любой из 20 градаций достаточно 5 бит.

Итак, при двоичном кодировании фотографии яркость каждого элемента (клеточки) изображения может быть записана 5-разрядным числом из 0 и 1. Заметим, что для фотографии размером со спичечный коробок нужна электронная память, содержащая в 5 раз больше ячеек, чем для двухтонового рисунка (т. е. 1 млн бит).

Как практически осуществляют двоичное кодирование изображения? Ведь не разбивают же фотографию на такие, прямо скажем, микроскопические клеточки вручную? Впрочем, если мы преодолеем эту трудность, то сразу же столкнемся с другой: к какой разрешенной градации следует отнести яркость той или иной клеточки.

Чтобы автоматизировать процедуру двоичного кодирования изображения, необходимо научиться выделять из него отдельные элементы и измерять их яркость. Давайте посмотрим, как это делает такой "естественный" прибор, как человеческий глаз.

Вопрос о том, как устроен человеческий глаз, волновал людей еще в глубокой древности. Им интересовались такие крупные философы и мыслители, как Демокрит (V–IV вв. до н. э.), Аристотель (IV в. до н. э.), Герофил ((II в. до н. э.), Тит Лукреций Кар (I в. до н. э.) и др. Но первые достоверные физиологические данные были получены лишь в I в. н. э. талантливым представителем древней медицины Клавдием Галеном (примерно 120–201 гг. н. э.).

…Гладиаторы бились уже два часа. Но вот под восторженный рев трибун один из них тяжело ранил своего соперника, и очередной бой в школе гладиаторов в римском городе Пергам закончился. Над раненым гладиатором склонился человек с обрамленным курчавой бородкой лицом и добрыми, излучавшими какой-то особенный свет глазами. Это был врач гладиаторов Клавдий Гален.

Сын богатого архитектора, он получил хорошее образование в области философии, математики, естественных наук, но решил посвятить себя врачебному искусству. Лечение израненных, с вывихами и переломами гладиаторов многому научило Галена и пригодилось ему позже, когда римский император Марк Аврелий сделал его придворным медиком.

Искуснейший врач своего времени, Гален положил начало общей физиологии человека и физиологии зрения, в частности. Благодаря ему человечество впервые узнало, что глаз состоит из хрусталика, радужной оболочки с отверстием (зрачком), сетчатки и зрительного нерва, связывающего сетчатку с мозгом.

Спустя несколько столетий (в IX в.) крупнейший ученый древнего Востока, физик, математик, медик Абу Али Ион аль-Хайсам (Альгацена) в своей знаменитой книге "Оптика" изложил первые научные основы зрения. Он разъяснил, что предметы посылают в глаз лучи каждой своей частицей и каждый луч возбуждает в глазу соответствующую точку хрусталика. Альгацена даже воспроизвел простейшую модель глаза: коробку с маленькой дырочкой, на задней стенке которой он получил изображения от нескольких зажженных свечек, поставленных перед дырочкой. Его наблюдения позволили сделать важный вывод: любой луч движется сквозь дырочку самостоятельно, не мешая другим.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Борис Крук читать все книги автора по порядку

Борис Крук - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




...И мир загадочный за занавесом цифр. Цифровая связь отзывы


Отзывы читателей о книге ...И мир загадочный за занавесом цифр. Цифровая связь, автор: Борис Крук. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x