Борис Крук - ...И мир загадочный за занавесом цифр. Цифровая связь
- Название:...И мир загадочный за занавесом цифр. Цифровая связь
- Автор:
- Жанр:
- Издательство:Горячая линия-Телеком
- Год:2004
- Город:Москва
- ISBN:5-93517-168-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Борис Крук - ...И мир загадочный за занавесом цифр. Цифровая связь краткое содержание
Для любознательных читателей, для молодежи, выбирающей профессию, и всех, кто интересуется современными телекоммуникациями, будет полезна студентам высших и средних учебных, заведений.
...И мир загадочный за занавесом цифр. Цифровая связь - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Мы уже упоминали о немецком физиологе Г. Гельмгольце. Это ему принадлежит заслуга в создании научной теории слуха. Он же развил и завершил в 1859–1866 гг. теорию цветного зрения. Помните, сетчатка глаза человека содержит светочувствительные палочки и колбочки? Так вот, колбочки, а их около 6–7 млн, делятся на три группы, из которых каждая чувствительна только к какому-либо основному цвету — красному, зеленому или синему.
И что же это значит, что лучи света, отражаясь от предмета и возбуждая колбочки сетчатки, как бы создают на ней три одноцветных изображения — красное, зеленое и синее? Да, так. Все остальные оттенки рождаются в нашем мозгу в результате сочетания основных цветов. Это как бы природная фантазия цветов.
Указанные свойства сетчатки глаза были использованы в 1903 г. французом Луи Жаном Люмьером (тем самым, который вместе со своим братом Огюстом изобрел кинематограф) для создания цветной фотографии. Люмьер брал зерна крахмала, окрашивал их в красный, зеленый и синий цвета, после чего посыпал этим трехцветным порошком фотопластинку. Современная фотопленка, применяемая, например, для изготовления цветных слайдов, имеет три тончайших слоя эмульсии, на которых получаются три одноцветных изображения — красное, зеленое и синее. В разных местах кадра они имеют разную плотность и, складываясь в разных пропорциях, дают многокрасочную картинку.
Итак, основная идея уже четко прорисована: из цветного изображения нужно получить три изображения в основных цветах. В свою очередь, их можно преобразовать в непрерывные токи и затем в двоичные кодовые импульсы для того, чтобы передать по назначению или поместить в электронную память.
Выделение трех одноцветных изображений — красного, зеленого и синего — из неподвижного или подвижного многокрасочного изображения довольно легко осуществляется цветными светофильтрами, пропускающими только свой цвет и задерживающими все остальные. На выходе каждого светофильтра ставится свой анализатор яркости: перемещающийся фотоэлемент с источником света для неподвижного изображения или передающая телевизионная трубка для подвижного. Чтобы воспроизвести цветное изображение, достаточно совместить на фотопленке, фотобумаге или экране восстановленные обычным путем красное, зеленое и синее изображения.
Ну вот, мы и завершили первую часть нашего повествования об удивительной, поистине магической системе счисления, содержащей всего две цифры, но позволяющей сколь угодно точно отобразить окружающий мир, его звуки, его движение. Всего с помощью двух понятий: один и нуль, или ДА и НЕТ, можно представить необозримые массивы информации — текстовой, звуковой, визуальной. Казавшееся вначале непостижимым, невозможным становится теперь естественным, научным, логичным.
Источниками информации могут быть не только люди или компьютеры. Ими также являются различные датчики (температуры, скорости ветра, смещения и т. п.), машины и механизмы и другие устройства. И любая информация может быть преобразована в цифровую форму! Потребители информации — это люди, компьютеры, машины (различные исполнительные механизмы, такие как роботы, станки, устройства автоматики и пр.). В любом случае, находятся ли источник и потребитель информации рядом или на расстоянии сотен и тысяч километров, информацию нужно уметь передавать. О том, как это делается, и пойдет речь в следующих главах.
НЕОБЫКНОВЕННОЕ ПУТЕШЕСТВИЕ
Медные рельсы
Дорога ты, дорога.
Стальная колея!..
М. Исаковский
Путешествие по стальной колее… Кто из нас не ездил различными железнодорожными маршрутами? И с каким неподдельным интересом мы вглядывались в мелькающий за окном незнакомый нам мир! Ритмы конца XX — начала XXI в. стремительно меняют все вокруг. Современная стальная колея — это не только рельсы, вокзалы и станции, но и сложнейшие системы автоматики и телемеханики, сигнализации и связи, управления движением. Но сейчас речь пойдет не об этом.
Мы предлагаем совершить не менее увлекательное путешествие по "медной колее". Ведь именно по ней протянулись на десятки тысяч километров маршруты, которыми следуют… нет, не люди, а биты — эти неутомимые "почтальоны", разносящие информацию по всему свету, заглядывающие в самые отдаленные уголки нашей планеты. В путь, читатель!
Биты начали путешествовать еще в глубокой древности. Так, в эпоху тамтамов прародители битов — звуки мерных ударов по барабану, — оповещая племя об опасности, переносились через расстояния с помощью колебаний воздуха. В эпоху костров и факельных телеграфов переносчиками битов служили световые колебания. Вспомните, как общался с соседом узник замка Иф граф Монте-Кристо. Позже русские революционеры использовали для передачи сообщений в тюрьмах механические колебания в стенах, возникающие при постукивании по ним. Век, подаривший миру электрический телеграф, "пересадил" биты на новый вид "транспорта" — электрические колебания. Этот "экспресс" остается основным и в наши дни.
Чтобы представить, как биты передаются с помощью электричества, заглянем в школьный курс физики. В любом веществе всегда найдется некоторое количество атомов, потерявших электроны со своих внешних орбит. "Улизнувшие" от атомов электроны беспорядочно "слоняются" в межатомном пространстве, другими словами, движутся хаотично. В металлических проводниках таких свободных электронов настолько много, что они непрерывно сталкиваются с атомами и друг с другом.
Под действием внешних электрических сил (скажем, электродвижущая сила батареи в телеграфе Морзе) электроны, кроме этих беспорядочных движений, непрерывно смещаются в одном определенном направлении. Именно это упорядоченное движение в одну сторону и называется электрическим током.
Мы уже знаем, что биты, несущие информацию о тексте, речи, музыке или изображении, сначала превращаются в электрические импульсы. Скажем, для комбинации из 5 битов 10101 импульсная последовательность будет содержать только первый, третий и пятый импульсы. Второй и четвертый импульсы будут отсутствовать. Наоборот, для комбинации 01010 в импульсной последовательности будут присутствовать только второй и четвертый импульсы. Как же эти импульсы передаются по металлическим проводам? При воздействии электрического импульса на проводник электроны в нем начинают двигаться упорядоченно. Если импульса нет, электроны совершают лишь хаотические движения. Таким образом, электроны, перемещаясь скачкообразно (не напоминают ли вам эти перемещения прыжки кенгуру?), переносят информацию по металлическому проводнику. А если проводник очень длинный? Сколько времени пройдет, пока электроны "доскачут" от одного его конца до другого?
Читать дальшеИнтервал:
Закладка: