Рудольф Сворень - Шаг за шагом. От детекторного приемника до супергетеродина
- Название:Шаг за шагом. От детекторного приемника до супергетеродина
- Автор:
- Жанр:
- Издательство:Детгиз
- Год:1963
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Рудольф Сворень - Шаг за шагом. От детекторного приемника до супергетеродина краткое содержание
Эта книга для тех, кто хочет стать радиолюбителем-конструктором и строить замечательные электронные приборы — приемники, усилители, радиостанции, магнитофоны. Начиная с простейшего детекторного приемника, постепенно, шаг за шагом, читатель познакомится с принципом работы, схемами и устройством различных самодельных приемников, включая многоламповые супергетеродины.
В книге коротко изложены элементы электротехники, которые нужно знать радиолюбителю, описана работа основных радиотехнических деталей — электронных ламп, полупроводниковых приборов, трансформаторов, колебательных контуров, а также приводятся справочные данные, необходимые радиолюбителю для самостоятельной работы.
Шаг за шагом. От детекторного приемника до супергетеродина - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
От многих из перечисленных недостатков свободен приемник прямого усиления с фиксированной настройкой на одну заранее выбранную станцию («эфирная радиоточка»). Поскольку все контуры такого приемника всегда настроены на одну и ту же частоту, то в них применяются конденсаторы постоянной емкости, а катушки включены и настроены раз и навсегда. Это облегчает использование в приемнике с фиксированной настройкой большого числа контуров. А если еще такой приемник настроен на станцию, работающую на сравнительно небольшой частоте, например на длинных волнах, то в нем легко получить и высокую избирательность и хорошую чувствительность. Мы уже говорили, что на длинных волнах контуру намного легче ослабить мешающую станцию, чем на средних или коротких волнах.
Вы можете удивиться: зачем мы расхваливаем «эфирную радиоточку»? Ведь прием одной радиостанции мало кого из радиолюбителей устроит! Но хвалили мы приемник с фиксированной настройкой не напрасно. Дело в том, что, применив сравнительно простое приспособление, можно сделать так, что этот приемник, сохраняя все свои преимущества, будет принимать большое число станций, работающих на длинных, средних и коротких волнах. Такое приспособление, позволяющее превратить «эфирную радиоточку» во всеволновый приемник с плавной настройкой, называется преобразователем частоты. Приемник с фиксированной настройкой вместе с преобразователем частоты и образуют высококачественное приемное устройство, получившее название «супергетеродин».
Смысл этого названия пояснить довольно трудно. Дело в том, что сравнительно давно был предложен так называемый гетеродинный метод радиоприема, который позволил получить более высокие результаты, чем с обычными приемниками прямого усиления. Затем гетеродинный приемник был усовершенствован, в результате чего появился новый замечательный тип радиоприемника, который и был назван «супергетеродин», что в переводе означает «намного лучше гетеродинного», а точнее, «сверхгетеродин».
Но дело, конечно, не в названии. Как бы ни назывался приемник, выполненный по супергетеродинной схеме, он и в наше время остается самым совершенным типом радиоприемного устройства.
В самой различной радиоаппаратуре важнейшую рать играют так называемые нелинейные процессы, к числу которых относятся уже знакомые нам детектирование, модуляция, выпрямление переменного тока, а также усиление сигнала в случае, когда появляются нелинейные искажения. Основным признаком всякого нелинейного процесса является изменение формы электрического сигнала, в результате чего в этом сигнале и появляются новые составляющие (рис. 77, 88, 107). Так, например, при детектировании и выпрямлении переменного тока форма сигнала резко изменяется — переменный ток превращается в пульсирующий. При этом появляется возможность выделить низкочастотную (детектирование) или постоянную (выпрямление) составляющую сигнала. Изменяется форма сигнала в результате нелинейных искажений и в усилителе низкой частоты. Появляющиеся при этом новые составляющие воспринимаются нами в виде посторонних шумов и хрипов, искажающих передачу.
Нелинейный процесс можно получить лишь в том случае, если в цепи имеется какой-либо элемент, изменяющий форму сигнала (нелинейный элемент), например полупроводниковый или вакуумный диод, электронная усилительная лампа, работающая в определенном режиме, полупроводниковый триод и др. В обычных электрических цепях, не искажающих форму сигнала, нам никогда не удалось бы осуществить ни модуляцию, ни детектирование, ни выпрямление переменного тока.
К числу нелинейных процессов относится и преобразование частоты, которое лежит в основе работы супергетеродинного приемника.
Если к нелинейному элементу, например к полупроводниковому диоду или электронной лампе, одновременно подвести два электрических сигнала с разными частотами, то в цепи этого элемента появятся самые различные составляющие каждого из этих сигналов. Среди них будет и переменная составляющая разностной или, как ее еще называют, промежуточной частоты. Такое название эта составляющая получила потому, что ее частота численно равна разности частот двух сигналов, подведенных к нелинейному элементу. Так, например, если к диоду подвести сигналы с частотами f 1 = 1800 кгц и f 2 = 1300 кгц, то в цепи диода появится новая переменная, составляющая с разностной (промежуточной) частотой f пр = 1800 – 1300 = 500 кгц. Выделить эту составляющую можно с помощью обычного колебательного контура L прC пр , настроенного на частоту 500 кгц.
Появление сигнала промежуточной частоты можно упрощенно объяснить с помощью графиков (рис. 122, 123).

Рис. 122. Если подключить к какой-либо цепи два генератора с двумя различными частотами f 1 и f 2, то из общего тока можно будет выделить только две составляющие I 1и I 2 с частотами f 1и f 2.

Рис. 123. Однако, если в цепь включить нелинейный элемент, например полупроводниковый диод или электронную лампу, то произойдет преобразование частоты (своего рода нелинейное искажение), кроме I 1и I 2 в цепи появятся новые составляющие и в том числе составляющая I прс разностной (промежуточной) частотой f пр, которую можно выделить с помощью контура.
Протекая в общей цепи, переменные токи I 1 и I 2 различных частот f 1 и f 2 суммируются. В некоторый момент времени t 1 оба тока протекают в одном и том же направлении, и амплитуды их складываются. Но постепенно положительная амплитуда тока I 2 с меньшей частотой f 2 будет все больше и больше «запаздывать», и наконец наступит момент t 2 , когда оба тока будут протекать в разных направлениях, а амплитуда общего тока I общ будет равна разности I 1 и I 2 . Дальнейшее «запаздывание» тока I 2 приведет к тому, что в момент t 3 направления обоих токов вновь совпадут, и общий ток возрастет. Таким образом, амплитуда общего тока I общ будет периодически изменяться, чем-то напоминая модулированный сигнал (рис. 122). Частота изменения амплитуды общего тока как раз и равна разности частот f 2— f 1 . Это легко доказывается простейшим примером: если частота f 1 , равна 10 гц, а частота f 2 = 8 гц, то в течение каждой секунды второе колебание «отстает» от первого на два полных периода, или, иными словами, в течение каждой секунды второе колебание дважды отстает от первого на целый период. Это значит, что дважды в течение каждой секунды амплитуды токов I 1 и I 2 совпадут, и амплитуда общего тока достигнет наибольшей величины. Таким образом, частота изменения амплитуды общего тока равна 2 гц, то есть равна разности f 1 и f 2 (10 — 8 = 2 гц).
Читать дальшеИнтервал:
Закладка: