Рудольф Сворень - Шаг за шагом. Транзисторы
- Название:Шаг за шагом. Транзисторы
- Автор:
- Жанр:
- Издательство:Детская литература
- Год:1971
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Рудольф Сворень - Шаг за шагом. Транзисторы краткое содержание
Книга написана простым языком и ориентирована на средний и старший школьный возраст. В ней автор доступным языком излагает основы работы полупроводниковых приборов. Книга сопровождается множеством иллюстраций, благодаря чему шаг за шагом постигается сложный мир внутри транзисторов.
Поскольку книга больше ориентирована на детей, то повествование идет буквально "на пальцах", не используется никаких сложных формул или вычислений — только как полупроводниковые приборы работают и как их использовать.
Шаг за шагом. Транзисторы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Резкое увеличение тока при высоких обратных напряжениях объясняется просто: разрушением pn -перехода. Разрушение происходит из-за слишком большой мощности, которая выделяется на pn -переходе и превращается в тепло. Полупроводниковые материалы перегреваются, резко возрастает их собственная проводимость, и pn- переход вообще исчезает. Происходит так называемый тепловой пробой, и диод становится обычным резистором.
При обратном включении диода чрезмерная, разрушающая pn -переход мощность получается при весьма больших напряжениях. И вот почему: обратный ток очень мал, а мощность, если вы не забыли, — это произведение напряжения на ток.
Обратите внимание, что при обратном включении диода тепловой пробой наступает не сразу. Увеличивая напряжение, мы сначала попадаем в область электрического пробоя. В этой области обратный ток резко возрастает, а значит, обратное сопротивление диода падает. Однако, если опять уменьшить напряжение, уменьшится и ток. Иными словами, электрический пробой, возникновение которого связано с тонкими молекулярными механизмами, процесс обратимый. Он резко, лавинообразно увеличивает обратный ток, но стоит уменьшить напряжение, диод возвращается в исходный режим и вновь становится электрическим вентилем.
В то же время тепловой пробой выводит полупроводниковый прибор из строя навсегда. И если когда-нибудь к вам в руки попадет диод, который потерял способность быть вентилем, потому что у него обратное сопротивление такое же, как и прямое, то знайте: диод побывал в области теплового пробоя.
Для того чтобы не погубить полупроводниковый диод (а часто вместе с ним могут погибнуть и другие элементы схемы, например, силовой трансформатор), чтобы не довести диод до теплового пробоя, не нужно превышать некоторую предельно допустимую для данного типа диодов мощность. Об этом как раз и говорят основные параметры диодов, приведенные в таблицах 1–5. Правда, в этих таблицах самой мощности вы не найдете, вместо нее указан средний прямой ток I вып , который можно пропустить через диод (подчеркиваем — это именно средний прямой ток; на короткий срок эту величину иногда можно превысить), и предельное обратное напряжение U обр-доп .

Обратный ток — 300 мка (при Uобр-доп ); прямое напряжение 0,3–0,5 в (при Iвып ).
1В наших таблицах ток Iпр-ср . обозначен Iвып , как и в большинстве официальных справочников.


Обратный ток 30–50 мка (при Uобр-доп ), прямое напряжение 0,5–1 в (при Iвып ).

Обратный ток 3 ма (при Uобр-доп ); прямое напряжение (при Iвып ) у германиевых диодов 0,2–0,5 в, у кремниевых диодов 1–1,5 в.
Внимание!Допустимые токи указаны в расчете на применение радиаторов. Если через диод проходит полный прямой ток ( Iвып ), то при использовании алюминиевого радиатора толщиной 3 мм его диаметр должен быть для диодов Д303 не менее 60 мм, для Д304 — 80 мм и для Д305 — 150 мм. Кремниевые диоды рассчитаны на радиаторы площадью 50 см 2при полном токе и 25 см 2при половинном токе (если температура окружающей среды 25 °C).
Примечание.Если в обозначении кремниевого диода после цифры стоит буква Б (например, Д242Б), то допустимый ток Iвып не более 5 а. Буква А в названии (например, Д242А) означает, что диод сохраняет свои параметры до температуры +130 °C; во всех остальных случаях допустимый прямой ток Iвып при температуре +130 °C вдвое меньше нормального, то есть 5 а (для диодов с обозначением Б ток не более 2 а). Буква П (например, Д242П) в названии диода отмечает лишь некоторые его технологические особенности и при выборе диода на нее можно не обращать внимания.

Обратный ток (при Uобр-доп ) у германиевых диодов 250 мка, у кремниевых — 30 мка; проходная емкость у германиевых диодов 1–2 пф, у кремниевых — 0,5 пф.
То, что вместо максимально допустимой мощности указаны именно эти параметры, объясняется довольно просто.
Мощность, выделяемая на диоде при его прямом включении, равна произведению прямого тока на приложенное к диоду прямое напряжение. Но ведь ток и напряжение взаимно связаны. Например, в диоде Д7Ж прямой ток 0,3 а будет при прямом напряжении 0,5 в, а мощность в этом случае составит 0,15 вт ( P= U· I). Именно эта мощность для данного типа диода является предельно допустимой, и превышать ее нельзя. Но вместо того чтобы говорить «не превышайте мощность 0,15 вт», мы можем сказать: «не превышайте ток 0,3 а». Ведь напряжение при этом токе для данного типа диодов почти всегда одинаково, а значит, ограничив ток, мы ограничиваем и мощность. Поскольку при включении диода в прямом направлении особенно важно знать, какой он может пропустить прямой ток, то именно эта величина входит в число основных параметров диода и включена в нашу таблицу рекомендованных режимов.
Рассуждая аналогичным образом, можно доказать, что, вместо того чтобы ограничивать мощность при обратном включении диода, достаточно ограничить его обратный ток или обратное напряжение. А поскольку при включении диода в какую-либо схему нам всегда легче определить, какое к нему будет приложено обратное напряжение, а не какой через него пойдет обратный ток, то именно поэтому допустимое обратное напряжение U обр-доп входит в число основных параметров диода.
Вывод, который нужно сделать в результате всех этих пространных рассуждений, достаточно краток: не допускайте превышения прямого тока I вып и обратного напряжения U обр-доп .
Обогащенные этими новыми знаниями, мы уже можем критически взглянуть на таблицы 1–5. Первое, что бросается в глаза, — это довольно большое количество разных диодов. У некоторых прямой ток побольше, у других поменьше, некоторые диоды терпят обратное напряжение в сотни вольт, для других смертельным является напряжение в два-три десятка вольт. Видно также, что у точечных диодов допустимые токи и напряжения значительно меньше, чем у плоскостных.
Здесь вполне уместно задать вопрос: зачем вообще нужны точечные диоды, если любой из них по предельным параметрам уступает самому слабенькому плоскостному диоду? А дело в том, что плоскостные диоды проигрывают точечным по одному весьма важному параметру, который хотя и не входит в нашу таблицу, но о котором следует помнить. Этот параметр — собственная емкость диода (рис. 20).
Читать дальшеИнтервал:
Закладка: