Пауль Хоровиц - Искусство схемотехники. Том 3 [Изд.4-е]
- Название:Искусство схемотехники. Том 3 [Изд.4-е]
- Автор:
- Жанр:
- Издательство:Мир
- Год:1993
- Город:Москва
- ISBN:5-03-002954-0 (русск.); 5-03-002336-4; 0-521-37095-7 (англ.)
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Пауль Хоровиц - Искусство схемотехники. Том 3 [Изд.4-е] краткое содержание
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем.
На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения.
Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.
Искусство схемотехники. Том 3 [Изд.4-е] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Другой, более элегантный метод показан на рис. 11.8.

Рис. 11.8. Полновекторизованное прерывание.
Здесь нет необходимости использовать неуклюжую цепочечную структуру, которая заменяется линиями запроса от каждого устройства. Состояния этих линий фиксируются в начале каждого цикла магистрали (фронтом сигнала AS) и поступают в дешифратор приоритета (который генерирует двоичный адрес возбужденного входа с максимальным номером, см. разд. 8.14 ). Кроме этого, дешифратор генерирует выходной сигнал (GS ' ), если возбуждается любой из входов; этот сигнал используется для инициации прерывания ЦП. Для простоты мы поместили прерывания от всех устройств на один уровень IPL. ЦП отзывается на прерывание, сохраняя в стеке адрес возврата, после чего инициирует цикл подтверждения (рис. 11.6). В течение цикла подтверждения наша схема устанавливает вектор (образованный в схеме приоритетного отбора), а также сигнал DTACK ' . После этого ЦП выполняет векторный переход на соответствующий обработчик.
Рассмотренная схема проста в реализации, и для семейства МП 68000 она работает быстрее, чем схема автовекторизации. Далее, относительно просто достигается увеличение числа прерывающих устройств степенями 8 при использовании дополнительных микросхем `574 и `148. От каждого периферийного устройства требуется выделенная линия (не одна линия шины); хотя при этом нарушается симметрия шины данных, такой способ предпочтительнее приоритетной цепочки, которая совершенно перестает работать, если забыть надеть перемычки на неиспользуемые разъемы. Фактически в новых компьютерных магистралях (например, магистраль NuBus машины Macintosh II) все чаще используются линии прерываний, разведенные по разъемам.
Отметим любопытную (и немаловажную) деталь в приведенной схеме. Вам может показаться странным, что индивидуальные запросы прерываний, генерируемые в устройствах с помощью фиксируемых бит (см., например, рис. 10.12), повторно фиксируются в схеме — 574. Причина этого носит тонкий характер. Прерывающие устройства, как правило, являются асинхронными по отношению к тактовым сигналам ЦП, и могут генерировать прерывания в любое время. Если второе периферийное устройство пошлет запрос прерывания в тот момент, когда ЦП считывает вектор первого прерывающего устройства, а фиксаторы в схеме обработки прерываний отсутствуют, установленный на шине вектор изменится «на полдороги» (в течение цикла подтверждения прерывания и получения вектора), что приведет к непредсказуемым результатам. Вы можете возразить, что такая ситуация маловероятна, и будете правы; однако она может возникнуть и вы даже можете оценить вероятность ее появления. Откладывая момент принятия решения о «намерении прервать» на начало каждого цикла шины, мы устраняем отмеченную проблему (вообще говоря, из-за явления «метастабильности» незначительная вероятность ошибки остается; если вам не хватает поводов для беспокойства, см. разд. 8.17 ).
Упражнение 11.4. Пусть мы рискнули отказаться от фиксирующего регистра `574 в установке, содержащей два асинхронных устройства, посылающих сигналы прерываний со скоростью 1000 прерываний в секунду каждое. Предположим, что цикл получения вектора имеет критическое временное окно в 1 нc, в течение которого смена установленного вектора приведет к чтению неправильного вектора (т. е. ЦП прочитает номер вектора, отличный от обоих установленных векторов). Оцените, сколь часто ЦП, осуществляя векторный переход, будет попадать пальцем в небо (с аварией системы).
Еще одно замечание по поводу нашей схемы. В процессорах серии 68000 предусмотрена команда HALT, которая прекращает все процессы на шине, но не исключает повторного пуска системы с помощью прерывания (а также, естественно, полной перезагрузки). К сожалению, наша схема не предусматривает повторный пуск по прерыванию (почему?). Таким образом, вы должны либо обойтись без команды HALT, либо использовать какой-то другой сигнал (возможно, производный от сигнала CLK) для фиксации запросов прерываний.
В МП 68000 предусмотрена возможность установки 192 различающихся векторов прерываний с номерами от 40Н до FFH; соответствующие адреса переходов (т. е. адреса соответствующих сервисных программ) хранятся в ячейках памяти 100H-3FFH.
Прямой доступ к памяти.В системах на базе МП 68000 прямой доступ не реализуется установленным на плате контроллером ПДП с адресными счетчиками и проч., как это имеет место в системах с магистралью PC. Напротив, МП 68000 полностью освобождает шину, передавая ее новому ведущему; новый ведущий шины (которым может быть как другой МП 68000, так и простенький периферийный интерфейс) может затем выполнять любые действия, включая (но не ограничиваясь ими) классические функции ПДП пересылки данных в память или из нее.
Чтобы сделаться ведущим шины, любое устройство может выдать «Запрос шины», установив на линии BR ' (через проводное ИЛИ) низкий уровень. ЦП очень серьезно относится к этой процедуре, во мгновение ока (?) устанавливая на линии «шина предоставлена» BG ' низкий уровень. ЦП также прекращает контролировать состояние всех линий шины (кроме BG ' ), включая адрес, стробы и другие управляющие линии, помеченные индексом 2) в табл. 11.4. Теперь внешнее устройство контролирует шину, и это состояние длится до снятия сигнала BR ' , после чего ЦП возвращает себе роль ведущего. Внешний ведущий обязан управлять шиной по тем же правилам, которым следует ЦП, чтобы не сбивалась работа остальных устройств, подключенных к шине. Собственно, они даже и не узнают, что произошло что-то необычное, если только не посмотрят на состояние линий BR ' /BG ' .
Если ведущими шины пытаются стать несколько устройств, они должны как-то разобраться между собой (выполнить арбитраж). Заметьте, что ЦП контролирует состояние линии BG ' , тем самым в какой-то мере управляя всем процессом.
Остальные сигналы магистрали.Ниже дано описание остальных сигналов, перечисленных в табл. 11.4.
CLK. Это вход для сигналов тактового генератора (см. рис. 11.3 и 11.4). Мы рекомендуем использовать какой-либо из недорогих кварцевых генераторов в DIP-корпусе, выпускаемых компаниями CTS, Dale, Motorola, Statec или Vectron. МП 68008 лучше работает с тактовыми сигналами симметричной формы, которые легко получить с помощью триггера, подключенного к выходу генератора. Максимальная допустимая частота обычно указывается в обозначении микропроцессора (и памяти тоже): последние варианты МП 68008 работают до частоты 10 МГц (МС 68008Р10). Двухбайтовые команды обычно выполняются за четыре периода тактовых импульсов (как на рис. 11.4), однако команды с более сложными способами адресации должны несколько раз обращаться к памяти, что может потребовать до 70 тактов или около того.
Читать дальшеИнтервал:
Закладка: