Журнал «Юный техник» - Юный техник, 2013 № 11
- Название:Юный техник, 2013 № 11
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2013
- ISBN:0131-1417
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Журнал «Юный техник» - Юный техник, 2013 № 11 краткое содержание
Юный техник, 2013 № 11 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
РАССКАЖИТЕ, ОЧЕНЬ ИНТЕРЕСНО…
Как создать терминатора?
В одном из фильмов про Терминатора робот Т-1000 восстанавливает себя из лужи жидкого металла. Понятно, что фильм фантастический, но мне все-таки интересно: возможно ли что-то подобное?
Игорь Коротаев, г. Краснодар

Конечно, из фильма не понять тонкостей подобной технологии. И все-таки давайте попробуем ее воссоздать, опираясь на необычные свойства некоторых металлов и возможности современной технологии.
Для начала познакомимся с галлием и его ближайшими родственниками — редкоземельными металлами. Галлий, индий и таллий по своему атомному строению соответствуют бору и алюминию, поскольку у них одинаковая конфигурация внешней электронной оболочки (два s-электрона и один р-электрон). От бора и алюминия они,
однако, отличаются, поскольку в данном случае вслед за уровнем s2р следует не уровень s2р6 (оболочка инертного газа), а уровень d10. Эта особенность строения влияет на свойства и поведение как самих элементов, так и их соединений. Галлий, индий и таллий отличаются, например, от алюминия своими особо низкими температурами плавления, а также особой мягкостью.
Из-за этого тот же галлий — химический элемент Ga с атомным номером 31 — впору использовать фокусникам. И вот почему. Если из галлия сделать, например, чайную ложку, похожую на алюминиевую, и опустить ее в горячий чай, то через несколько минут ложка… исчезнет, поскольку металл расплавится. Да что там чай! Галлий превращается в жидкость даже на ладони, поскольку температура его плавления 29,8 °C.
Правда, мы бы вам не советовали ни плавить галлий на ладони, ни тем более пить чай из той чашки, где растворилась ложка. Дело в том, что галлий ядовит, поэтому обращаться с ним следует крайне осторожно.
Слитки галлия обычно транспортируют в герметичных пакетах из полиэтилена, который плохо смачивается жидким галлием. В чистом виде металл в природе не встречается, однако его соединения в ничтожно малых количествах содержатся в бокситах и цинковых рудах. Оттуда его и добывают в весьма небольших количествах.
Малая добыча обусловлена двумя причинами. Во-первых, получение галлия обходится дороже, чем добыча золота. Во-вторых, долгое время специалисты попросту не знали, в каких целях его стоит применять.
Потом его понемногу стали использовать при создании легкоплавких сплавов, нашли ему дело в микроэлектронике.
Сейчас арсенид галлия применяется в микросхемах, а нитрид галлия используют при создании полупроводниковых лазеров и светодиодов синего и ультрафиолетового диапазона. В настоящее время разработаны также фармацевтические и радиофармацевтические препараты, содержащие галлий.
Ложка из галлия буквально тает в чашке с горячим чаем.
Галлий растекается на ладони, превращаясь из твердого тела в жидкость.
Ученые освоили трехмерную печать жидкого металла.
А вот какое интересное открытие сделали совсем недавно инженеры Университета Северной Каролины. Они разработали технологию печати трехмерных объектов из жидкого сплава индия и галлия.
Новизна разработки заключается в том, что ученым удалось подобрать такой сплав индия и галлия, который после печати на BD-принтере способен держать форму. Напечатанная структура из шариков и нитей держится за счет тонкой пленки оксида, а внутри при этом остается жидкой. После того, как требуемый объект будет напечатан, его можно покрыть полимером и получить, таким образом, гибкие и эластичные провода, которые не разрушаются при многократном сжатии и растяжении.
Ранее ученые уже применяли сплавы на основе галлия и индия для создания металлических объектов, которые способны держать форму. Однако тогда способность восстанавливать форму каплям металла придавало специальное порошковое покрытие.
Конечно, от первых опытов до создания роботов, которые способны менять свою форму по собственному усмотрению, пока еще далеко. Но, как говорится, лед тронулся…
ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Четыре измерения Вселенной
Международная группа физиков — Ниайеш Афшорди (Niayesh Afshordi), Раджеш Пурхасан (Razieh Pourhasan) и Роберт Манн (Robert B. Mann) — предложили новую теорию рождения Вселенной. Они полагают, что наше мироздание родилось не при Большом взрыве, как считают многие, а в результате превращения четырехмерной звезды в «черную дыру», что породило выброс огромного количества материи.
Из этого «мусора» и получилось все остальное — галактики, звезды, планеты и прочие небесные тела.
Эта теория, при всей ее необычности, объясняет многие проблемы в современной теории зарождения Вселенной. Судите сами. Если Вселенная получилась из бесконечно плотной точки (сингулярности) при Большом взрыве, то, во-первых, отчего возник этот взрыв? Кроме того, не совсем понятно, каким образом после столь грандиозного взрыва все мироздание имеет почти одинаковую температуру в разных уголках. Возраст нашей Вселенной, по свежим расчетам, составляет всего около 13,8 млрд. лет, а такого срока недостаточно, чтобы вся материя остыла до более-менее одинаковых температур. Ведь Большой взрыв, как ему и положено, был очень хаотичен.
Ну, а поскольку всего этого физики объяснить не смогли, то вышли из положения следующим образом — предположили, что в момент возникновения Вселенной современные законы физики еще не действовали. А потому сразу после рождения Вселенная начала разрастаться со скоростью, формально превышавшей световую (этот процесс называется инфляцией). И некий исходно существовавший маленький участок мироздания с относительно равномерной температурой в результате инфляции оказался «растянут» на всю Вселенную.
Однако профессор Ниайеш Афшорди из Института теоретической физики «Периметр» (Канада) не считает
такое объяснение достоверным. Взамен он рискнул выдвинуть иную теорию рождения Вселенной.
Для начала ученый едко заметил: «Все, что физики сегодня знают о сингулярности, — это то, что там могут водиться драконы». И пояснил: «Информация об этом явлении весьма похожа на то, что писали о неведомых землях средневековые картографы. Не зная ничего толком, они населяли неизвестные земли драконами и прочими сказочными существами».
Разочаровавшись в теории Большого взрыва, Афшорди, как сказано, решил создать собственную версию рождения Вселенной. Для этого он и его коллеги-теоретики обратились к гипотезе, выдвинутой в 2000 году физиками из Германии. Те предположили, что, возможно, наша трехмерная Вселенная является всего лишь тонкой пленкой — мембраной, покрывающей «основную Вселенную», которая имеет четыре (а может, и больше!) геометрических измерения.
Читать дальшеИнтервал:
Закладка: