В. Германович - Альтернативные источники энергии и энергосбережение
- Название:Альтернативные источники энергии и энергосбережение
- Автор:
- Жанр:
- Издательство:Наука и Техника
- Год:2014
- Город:Санкт-Петербург
- ISBN:978-5-94387-852-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
В. Германович - Альтернативные источники энергии и энергосбережение краткое содержание
В книге рассматриваются устройства, с помощью которых можно получать энергию из неисчерпаемых или возобновляемых природных ресурсов. Такие устройства снижают зависимость от традиционного сырья. Повсеместный переход на альтернативную энергетику может эту зависимость полностью исключить.
В ряде случаев использование традиционных источников или дорого, или они расположены так далеко от загородного дома, что коммуникации проложить невозможно. В этих случаях стоит задача электроэнергию и тепло получить на месте его использования. Это совершенно реально, да и экономически выгодно.
Книга рассказывает об использовании солнечного излучения, механической энергии ветра, течения рек, приливов и отливов морей и океанов, геотермальной энергии Земли, биомассы для получения электроэнергии и тепла.
Книга предназначена для широкого круга домашних мастеров.
Альтернативные источники энергии и энергосбережение - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Большинство методов включают стадию высушивания при использовании уже частично высушенных материалов; однако в материале допускается определенное количество воды, которое необходимо для образования синтез газа (паровая газификация). Биомасса, содержащая более 30 % воды, потребует, очевидно, сушки перед осуществлением любых процессов.
Для облегчения процесса сушки, а также достижения требуемой скорости реакции в процессе тепловой обработки биомасса должна быть измельчена с получением соответствующих размеров частиц. Технологическая схема включает дробильные, измельчительные и размалывающие установки. Если биологический материал представляет часть общих отходов, необходим предварительный отсев негорючих и других примесей. «Уплотненная биомасса», о которой говорилось выше, может быть использована для процессов обогащения без дальнейших обработок.
Нагрев биомассы приводит к удалению влаги (ярко выраженный эндотермический процесс). При температуре выше 100 °C биомасса начинает разлагаться, а между 250 и 600 °C основными продуктами являются уголь и маслянистая кислая смесь дегтя и различных количеств метанола, уксусной кислоты, ацетона и следы других органических веществ. До развития нефтехимической промышленности источником этих соединений была перегонка древесины.
На рис. 7.3 показан в качестве примера пиролиз целлюлозы. При температуре свыше 600 °C жидкие продукты пиролиза могут быть газифицированы, а свыше 800 °C газифицируется также и уголь в результате эндотермической реакции углеродсодержащих молекул с водой с образованием синтез газа, смеси оксида углерода и водорода.
Рис. 7.3. Пиролиз целлюлозы
Какие химические реакции протекают в процессе тепловой обработки биомассы, точно определить трудно вследствие очень сложной химической природы биомассы. Правда, основными компонентами многих типов растительного материала являются целлюлоза и крахмал, и нам известны некоторые реакции сухой перегонки этих продуктов и их термодинамика. Сначала происходит карбонизация или обугливание.
Реакция является, в некоторой степени, экзотермической, т. е. такой же, как и получение пиролитического масла. В качестве средней молекулярной формулы пиролитического масла принимается формула С 6Н 8О (энтальпия=2,1 ГДж/т).
Образование синтез газа является в высшей степени эндотермической реакцией. При быстром нагревании целлюлозы, как при «мгновенном» пиролизе, может образоваться некоторое количество олефинов в ходе другой эндотермической реакции.
Несмотря на некоторые утверждения относительно автотермального характера (или близкого к автотермальному) процесса сухой перегонки биомассы, термическое обогащение биомассы обычно требует затрат теплоты, составляющих до 10 % теплоты сжигания сухой биомассы (примерно до 2 ГДж/т). Эта доля может быть значительно выше, например, при производстве угля, где происходит потеря летучих продуктов.
За исключением производства высокоценного древесного угля, используемого как в качестве топлива, так и для других целей, сухая перегонка биомассы в промышленном масштабе не используется в развитых странах. Древесный уголь обычно получают путем нагревания древесины до 350 °C в пиролитическом реакторе. Выход составляет около 35 % топлива с энергоемкостью примерно 29 ГДж/т, то есть сохраняется около 50 % энергии древесины.
Ниже даются комментарии по другим предложенным процессам. В одном из процессов используется пиролиз при 500–600 °C и давлении 20 бар с получением синтеза газа. Наконец, быстрый пиролиз сухой биомассы при 800 °C ведет к образованию олефинов, которые могут быть полимеризованы в автомобильный бензин (его заменитель).
В «западном» процессе (ранее процесс Гаррота) сырье должно быть высушено и тонко размолото. Теплота, необходимая для осуществления пиролиза, получается в результате реакции. Газы удаляются из угля в циклонном сепараторе до очистки от жидкостей и остающихся твердых частиц, а затем уголь и газы возвращаются в пиролизатор. Схематическая диаграмма этого процесса показана на рис. 7.4.
Рис. 7.4. Пиролиз биомассы
В целях максимизации выхода жидкости время пиролиза сокращается до нескольких секунд. Выход пиролитического масла составляет около 40 % в расчете на сухое сырье. Пиролитическое масло не смешивается с топливной нефтью, имеет коррозионные свойства, аналогичные свойствам уксусной кислоты, и может храниться только в течение примерно двух недель вследствие продолжающихся химических реакций.
Для использования этого масла в качестве топлива необходимо специальное оборудование. Теплотворная способность пиролитического масла составляет около 53 % теплотворной способности топливной нефти (по массе). Выход угля составляет от 20 до 50 %,содержание золы в угле до 50 %. Газы имеют низкую теплотворную способность и содержат до 65 % двуокиси углерода и до 8 % сероводорода.
Свойства пиролитического масла.Углерод — 57,5 %. Водород — 7,6 %. Кислород — 33,4 %. Энергоемкость — 24 ГДж/т. Плотность — 1,3 г/см 3.
В ходе процесса древесные стружки проходят через печь с продуктами реакции. В качестве катализатора добавляется древесная зола. Газы, жидкости и уголь газифицируются с помощью пара, присутствующего в древесине. Этот процесс считается авто термическим вследствие экзотермического характера разложения древесины и переноса тепла от горячих продуктов в систему.
Третий процесс включает быструю паровую газификацию биомассы с образованием смеси олефиновых углеводородов. Высушенную биомассу размалывают в муку, насыщают паром и остаточными газами полимеризационного реактора и нагревают до 800 °C.
Эндотермическая реакция поддерживается путем сжигания пиролитического угля (побочного продукта) и отходящих газов. Образовавшиеся газы содержат около 4 % по массе этилена, полимеризующегося до высших углеводородов при давлении около 56 кг/см 3и температуре 500 °C. Однако побочные продукты не обеспечивают достаточного количества теплоты для протекания процесса, что вызывает необходимость сжигания дополнительного количества древесины. Выход автомобильного бензина и масла определяется термической эффективностью 11,9 % в расчете на сухое древесное сырье.
Газификация биомассы кислородом дает газ средней энергоемкости, содержащий в основном оксид углерода и водород. Аналогичная реакция происходит на воздухе, но образующиеся газы разбавляются азотом, снижающим теплотворную способность. Химические процесс газификации представляет собой сочетание химического процесса сжигания с некоторыми “реакциями пиролиза, описанными в предыдущем разделе. Уголь, полученный в результате пиролиза, реагирует с паром или диоксидом углерода с образованием синтез газа.
Читать дальшеИнтервал:
Закладка: