В. Германович - Альтернативные источники энергии и энергосбережение
- Название:Альтернативные источники энергии и энергосбережение
- Автор:
- Жанр:
- Издательство:Наука и Техника
- Год:2014
- Город:Санкт-Петербург
- ISBN:978-5-94387-852-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
В. Германович - Альтернативные источники энергии и энергосбережение краткое содержание
В книге рассматриваются устройства, с помощью которых можно получать энергию из неисчерпаемых или возобновляемых природных ресурсов. Такие устройства снижают зависимость от традиционного сырья. Повсеместный переход на альтернативную энергетику может эту зависимость полностью исключить.
В ряде случаев использование традиционных источников или дорого, или они расположены так далеко от загородного дома, что коммуникации проложить невозможно. В этих случаях стоит задача электроэнергию и тепло получить на месте его использования. Это совершенно реально, да и экономически выгодно.
Книга рассказывает об использовании солнечного излучения, механической энергии ветра, течения рек, приливов и отливов морей и океанов, геотермальной энергии Земли, биомассы для получения электроэнергии и тепла.
Книга предназначена для широкого круга домашних мастеров.
Альтернативные источники энергии и энергосбережение - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Во всех прочих отношениях анаэробная ферментация ничуть не хуже компостирования. А самое важное — что таким способом прекрасно перерабатывается жидкий навоз со свинофермы: пройдя через биореактор, эта зловонная жижа превращается в прекрасное удобрение.
Опытная установка, производящая биогаз, вот уже четыре года работает на одной из свиноферм совхоза «Огре». Рядом стоит еще один реактор, импортный, пущенный в прошлом году. В общем, как считают в совхозе, можно было обойтись и без импорта: зачем тратить валюту на то, что вполне можно делать своими силами?
Оба реактора, объемом по 75 кубометров каждый, перерабатывают все отходы с фермы на 2500 свиней, давая совхозу остро необходимое всякому хозяйству высококачественное удобрение и по 300–500 кубометров газа в сутки.
Не газом окупает, а экологическим благополучием: иначе пришлось бы строить и навозохранилища, и очистные сооружения, тратить большие деньги и очень много энергии. Кроме того, совхоз получает хорошее удобрение: в нем нет, как в свежем навозе, семян сорняков, способных прорасти, а значит, меньше надо расходовать гербицидов. Опять-таки, экологическая выгода.
Биогаз же — как бесплатное приложение: приятно, но не обязательно.
Именно поэтому не так просто подсчитать экономическую эффективность подобных разработок. Обычно считают как раз по биогазу: затраты такие-то, газа получено столько-то, соотйетствующее количество солярки стоит столько-то. Получается в общем тоже выгодно, но сроки окупаемости не рекордные…
Тут есть еще одна тонкость. Бактерии метанового брожения в отличие от аэробов при компостировании сами тепла не выделяют, а работают они только в тепле. Для одних, термофильных, нужно поддерживать температуру около 55 °C, для других, мезо-фильных — около 37 °C. Вопрос о том, какой вариант лучше, еще не решен, и даже в Институте микробиологии существуют разные мнения. Академик М. Е. Бекер считает, что термофильный процесс эффективнее, а лабо
ратория биотехнических систем, которой руководит кандидат технических наук А. А. Упит, стоит за мезофильный. Но так или иначе, в нашем климате реактор большую часть года приходится подогревать. И если в жаркой Индии и Китае, где биогазовые установки насчитывают миллионами, такой проблемы не возникает, то в совхозе «Огре» на это уходит в среднем около половины биогаза, Полученного за год.
Это, естественно, ухудшает показатели экономической эффективности, если считать только по сэкономленному топливу. Но даже в таких условиях остающегося биогаза хватает, чтобы обеспечить треть энергетических потребностей фермы: тут и отопление, и горячая вода.
Конечно, картина получилась бы совершенно иная, если бы к энергетическому эффекту прибавить еще эффект экологический, переведя его в рубли. Но как это сделать, пока еще, кажется, не знает никто.
Во всяком случае, можно сказать одно: работников совхоза «Огре» результаты первого опыта вполне устраивают, и они намерены расширять дело. В этом году начнется строительство биогазовой установки для большого совхозного свинокомплекса. Уже не на 2500, а на 20000 голов. Ожидается, что эта установка, даже если считать только по газу, окупится за 5–6 лет. И гигантские навозохранилища, о которых говорилось в начале раздела, строить не придется.
Биогазовая установка может быть создана в любом хозяйстве из местных, доступных материалов силами специалистов самого хозяйства.
Ферментация навоза идет в анаэробных (бескислородных) условиях при температуре 30–55 °C (оптимально 40 °C). Длительность ферментации, обеспечивающая обеззараживание навоза, не менее 12 суток. Для анаэробной ферментации можно использовать как обычный, так и жидкий, бесподстилочный навоз, который легко подается в биореактор насосом.
При ферментации в навозе полностью сохраняются азот и фосфор. Масса навоза практически не изменяется, если не считать испаряемой воды, которая переходит в биогаз. Органическое вещество навоза разлагается на 30–40 %; деструкции подвергаются в основном легко разлагаемые соединения — жир, протеин, углеводы, а основные гумусообразующие компоненты — целлюлоза и лигнин — сохраняются полностью.
Благодаря выделению метана и углекислого газа оптимизируется соотношение C/N. Доля аммиачного азота увеличивается. Реакция получаемого органического удобрения — щелочная (pH 7,2–7,8), что делает такое удобрение особенно ценным для кислых почв. По сравнению с удобрением, получаемым из навоза 9бычным способом, урожайность увеличивается на 10–15 %.
Получаемый биогаз плотностью 1,2 кг/м 3(0,93 плотности воздуха) имеет следующий состав (%): метан — 65, углекислый газ — 34, сопутствующие газы — до 1 (в том числе сероводород — до ОД). Содержание метана может меняться в зависимости от состава субстрата и технологии в пределах 55–75 %. Содержание воды в биогазе при 40 °C — 50 г/м 3; при охлаждении биогаза она конденсируется, и необходимо принять меры к удалению конденсата (осушка газа, прокладка труб с нужным уклоном и пр.).
Энергоемкость получаемого газа — 23 мДж/м 3, или 5500 ккал/м 3. Оборудование представлено на рис. 7.11.
Основное оборудование биогазовой установки — герметически закрытая емкость с теплообменником (теплоноситель — вода, нагретая до 50–60 °C), устройства для ввода и вывода навоза и для отвода газа.
Примечание.
Так как на каждой ферме свои особенности удаления навоза, использования подстилочного материала, теплоснабжения, создать один типовой биореактор невозможно. Конструкция установки во многом определяется Местными условиями, наличием материалов.
Для небольшой установки наиболее простое решение — использовать высвободившиеся топливные цистерны. Схема биореактора на базе стандартной топливной цистерны объемом 50 м 3показана на рис. 7.11. Внутренние перегородки могут быть из металла или кирпича; их основная функция — направлять поток навоза и удлинить путь его внутри реактора, образуя систему сообщающихся сосудов. На схеме перегородки показаны условно; их число и размещение зависят от свойств навоза — от текучести, количества подстилки.
Рис. 7.11. Оборудование для производства биогаза
Биореактор из железобетона требует меньше металла, но более трудоемок в изготовлении. Чтобы определить объем биореактора, нужно исходить из количества навоза, которое зависит как от численности и массы животных, так и от способа его удаления: при смыве бесподстилочного навоза общее количество стоков увеличивается во много раз, что нежелательно, так как требует увеличения затрат энергии на подогрев.
Читать дальшеИнтервал:
Закладка: