Владимир Куманин - Материалы для ювелирных изделий
- Название:Материалы для ювелирных изделий
- Автор:
- Жанр:
- Издательство:Астрель, Кладезь
- Год:2012
- Город:Москва
- ISBN:978-5-271-4577
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Куманин - Материалы для ювелирных изделий краткое содержание
Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.
Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».
Материалы для ювелирных изделий - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Рекристаллизационный отжиг
Рекристаллизационный отжиг – это термическая обработка холоднодеформированного металла. Назначение рекристаллизационного отжига – уменьшение прочности и увеличение пластичности деформированного металла, снятие наклепа, вызванного холодной пластической деформацией.
Основной процесс, который происходит при рекристал-лизационном отжиге – рекристаллизация обработки.
Температура рекристаллизационного отжига обычно выбирается на 100–150 °C выше температуры порога рекристаллизации. Время выдержки —1 ч. Скорость охлаждения особого значения не имеет. Значительный перегрев металла нежелателен, так как может привести к росту зерна и уменьшению пластичности сплава. В производстве изделий из цветных металлов рекристаллизационный отжиг применяется намного чаще, чем при производстве стали. Наибольшее применение имеет полный рекристаллизационный отжиг – в качестве как подготовительной стадии перед очередной операцией холодного деформирования, так и окончательной термообработки. При выборе режима отжига часто пользуются диаграммами рекристаллизации (рис. 6.1), причем следует учитывать возможность укрупнения зерен и формирование разнозеренной структуры. Скорость нагрева следует выбрать по возможности выше, если есть опасность нежелательного укрупнения зерна. Быстрый нагрев обеспечивается, например, погружением детали в соляную ванну.
Рис. 6.1. Диаграмма рекристаллизации золота.
Специальный рекристаллизационный отжиг на ультрα-мелкое зерно (размером 10 мкм и менее) возможен при большем числе центров рекристаллизации, что достигается быстрым нагревом в селитровой ванне. Дополнительно необходимым условием является наличие в структуре дисперсных частиц, тормозящих рост зерна. Такая обработка широко применяется для ряда медных сплавов.
В ряде случаев ограничиваются неполным рекристаллизационным отжигом. При таком отжиге частично сохраняются деформированные зерна.
Латуни перед обработкой давлением и получением требуемых свойств заготовок подвергаются рекристаллизационному отжигу при 500–550 °C с охлаждением на воздухе. Для улучшения отделения слоя окалины охлаждение проводят в воде. Если требуется получить мелкое зерно (последующая операция – глубокая вытяжка), температуру отжига снижают до 450–500 °C. Перегрев при отжиге приводит к крупнозернистости, снижающей как прочность, так и пластичность.
Отжиг, уменьшающий остаточныенапряжения. Остаточные напряжения (1-го рода) получаются при литье заготовок, сварке, закалке, шлифовке и прочих технологических операциях. Они могут быть сжимающими или растягивающими. Последние наиболее опасны, так как, складываясь с приложенной внешней нагрузкой, могут вызывать разрушения даже при относительно небольшой нагрузке. Температуры отжига для снятия внутренних напряжений обычно невелики. Для сплавов на основе меди, серебра и золота – 400–500 °C, на основе платины 600–700 °C.
Гетерогенизационный отжиг.Назначение гетероге-низационного отжига – получить наиболее равновесную, стабильную структуру в сплаве, понизить его прочность и повысить пластичность.
Гетерогенизационный отжиг применим только в том случае, когда растворимость одного из компонентов в твердом состоянии значительно изменяется с температурой. Главным процессом при гетерогенизационном отжиге является возможно более полное выделение второй фазы из матрицы.
На рис. 6.2 приведена часть диаграммы состояния серебро – медь. Медь ограниченно растворима в серебре, и ее растворимость изменяется с температурой от 0,2 % при 220 °C до 8,8 % при 779 °C. В сплавах, содержащих до 8,8 % меди, структура в равновесном состоянии двухфазна (α-твердый раствор меди в серебре и β-твердый раствор серебра в меди). Если скорость охлаждения после кристаллизации сплава не достаточно низкая, то β-фаза или выделяется не полностью, или не образуется вообще. В этом случае назначается гетерогенизационный отжиг.
Полный смягчающий отжиг заключается в нагреве сплава из двухфазной области выше температуры сольвуса до температуры однофазной области (точка Ь).
Рис. 6.2. Часть диаграммы Ag – Си.В результате формируется однородный твердый раствор α. Последующее медленное охлаждение сплава позволит получить наиболее равновесную структуру, снизить концентрацию твердого раствора а до равновесной за счет понижения растворимости компонентов при понижении температуры. При этом успевает произойти процесс образования частиц второй фазы. Все это приводит к разупрочнению структуры сплава. Поэтому скорость охлаждения играет в данном случае решающую роль. При более быстром охлаждении очень часто твердый раствор оказывается пересыщенным.
Для сокращения времени обработки материалов, у которых растворимость слабо зависит от температуры до некоторого предела, а затем резко возрастает, может быть применен неполный смягчающий отжиг. Такой отжиг проводят при температуре ниже линии сольвуса, но достаточной для протекания диффузии и заметного снижения концентрации матричного раствора (точка а на рис. 6.2).
Хотя время выдержки при неполном отжиге больше, нежели при полном, скорость охлаждения может быть достаточно высокой (на воздухе и даже в воде).
Регулируя параметры гетерогенизационного отжига (скорости нагрева и охлаждения, температуру и время выдержки), добиваются различной твердости, пластичности, коррозионной стойкости.
ЗакалкаЗакалкой называется термическая обработка, основным процессом при которой является формирование неравновесной структуры во время ускоренного охлаждения.
Согласно принятой классификации (Новиков И. И. Теория термической обработки металлов), различают три принципиально отличных вида закалки: закалка без полиморфного превращения, закалка с полиморфным превращением и закалка с плавлением поверхности.
Закалка с полиморфным превращением (на мартенсит) – самый древний вид термообработки стали.
Закалка без полиморфного превращения – термическая обработка, фиксирующая при более низкой температуре состояние сплава, свойственное ему при более высокой температуре. Ее промышленное использование началось одновременно с применением дюралюминия в авиастроении. В сочетании со старением она является основным способом упрочнения очень многих сплавов цветных металлов. Новейшим видом термической обработки, появившимся в 1970-х гг., является закалка с плавлением поверхности. Она имеет пока очень узкое применение, главным образом после лазерного нагрева.
Основные параметры любого вида закалки – температура нагрева, время выдержки и скорость охлаждения. Как и в случае отжига, в процессе нагрева под закалку необходимо обеспечить наибольшую полноту фазовых изменений, растворение неравновесных фаз и т. д. Основным отличием закалки от отжига является такая высокая скорость охлаждения, при которой максимально ограничены диффузионные процессы.
Читать дальшеИнтервал:
Закладка: