Владимир Куманин - Материалы для ювелирных изделий
- Название:Материалы для ювелирных изделий
- Автор:
- Жанр:
- Издательство:Астрель, Кладезь
- Год:2012
- Город:Москва
- ISBN:978-5-271-4577
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Куманин - Материалы для ювелирных изделий краткое содержание
Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.
Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».
Материалы для ювелирных изделий - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
У богатых серебром гомогенных твердых растворов отчетливо наблюдается «внутреннее окисление». На поверхности сплава образуется очень тонкий слой окиси меди, через который кислород сравнительно легко проникает внутрь, образуя с входящей в твердый раствор медью частицы закиси меди. При малой длительности нагрева максимум поглощения кислорода наблюдается у сплава с 10 % меди.
При длительных выдержках окисляемость металла достигает наибольшего значения в сплавах с 80 % серебра. В этих сплавах большое содержание меди приводит к образованию толстого внешнего окисного слоя. В то же время диффузия кислорода внутрь слитка приводит к образованию внутреннего окисного слоя, состоящего из закиси меди Сu2О.
С увеличением доли меди уменьшается склонность сплавов к внутреннему окислению, так как мелкозернистая эвтектическая структура препятствует диффузии кислорода в сплав и окисление происходит лишь на поверхности сплава. Аналогичное явление наблюдается у заэвтектических сплавов, в которых проникновению кислорода препятствуют кристаллы р-твердого раствора.
Образующаяся в серебряно-медных сплавах закись меди Сu2О имеет больший, нежели Ag, удельный объем, вследствие чего в сплаве возникают внутренние напряжения, приводящие к повышению твердости и образованию трещин даже при малых степенях пластической деформации. Возникновение трещин приводит к еще более глубокому окислению при промежуточных отжигах, что делает невозможным получение из таких заготовок тонких полос или проволоки. Закись меди, кроме того, вредна еще и тем, что имеет склонность к образованию крупных фракций при отжиге, которые скапливаются в виде пластин или полос под поверхностным слоем, что сильно ухудшает обрабатываемость сплавов.
При обработке ювелирных сплавов, содержащих более 80 % серебра, внешний окисленный слой удаляют путем травления в горячем растворе серной кислоты. После нескольких отжигов и травлений на поверхности сплава образуется обогащенный серебром слой, который почти не окисляется и хорошо проводит кислород внутрь сплава, что вызывает глубокое внутреннее окисление. Из-за этого при прокатке, штамповке, волочении сплав расслаивается, шелушится, образуются трещины и надрывы. При последующей шлифовке и полировке обогащенный серебром слой снимается, и на поверхность выступает внутренний оксидный слой в виде серо-голубых пятен.
Выступающие над поверхностью частицы закиси меди при обработке, особенно при шлифовке, полировке, а также при прокатке, вырываются из металла, оставляя штрихообразные следы и углубления («штриховое» серебро).
Сплавы, содержащие закись меди, нельзя отжигать в защитной атмосфере, содержащей водород, так как последний, проникая в металл, при температурах выше 500 °C взаимодействует с закисью меди, восстанавливая ее до металлического состояния с образованием паров воды. Образующиеся при этом газовые поры вспучивания делают сплав ломким и непригодным для дальнейшей обработки.
10.6. Особенности литья серебряных сплавов
В связи с малым количеством сплавов драгоценных металлов, используемых для заливки литейных форм, не представляется возможным вести рафинирование жидкого металла в процессе плавки. В этих условиях необходимы использование чистых исходных компонентов, тщательная подготовка шихты, надежная защита от взаимодействия с атмосферой расплава и рационально выбранные раскислители. Шихтовые материалы тщательно обезжиривают, измельчают до нужных размеров и сушат в шкафу при температуре 120–150 °C. В качестве покровных флюсов используют березовый уголь и плавленую борную кислоту.
Сплавы серебра СрМ 916 и СрМ 875 плавят в графитовых тиглях. На дно тигля засыпают флюс слоем толщиной (5—10)10 3 м и тигель нагревают до температуры 950—1050 °C. Затем под слой расплавленного флюса добавляют серебро (чистое), отходы сплава серебра собственного производства и медь. Шихта расплавляется при тщательном перемешивании расплава. Особенно внимательно следят за расплавлением кусочков меди, которые имеют высокую теплоемкость и плавятся медленнее серебра и отходов сплава. Раскисление металла производят фосфористой медью (0,1 % от массы шихты) при полном его расплавлении. Выдержка жидкого металла после раскисления составляет 2–3 мин, температура заливки – 1000–1100 °C. Непосредственно перед заливкой литейной формы снимают шлак и металл тщательно перемешивают.
11. Золото и его сплавы
Золото – химический элемент, металл. Атомный номер 79, атомный вес 196,97, плотность 19,32 г/см3. Кристаллическая решетка – кубическая гранецентрировапная (ГЦК). Температура плавления 1063 °C, кипения 2970 °C. Твердость по Бринеллю – 18,5.
Золото – металл желтого цвета. Этот благородный металл не взаимодействует с кислотами (кроме смеси соляной и азотной кислот – царской водки), устойчив в атмосфере, воде пресной и морской.
Золото имеет высокую отражательную способность, хорошо полируется и обладает высокой пластичностью – прокатывается в листы толщиной до 0,0001 мм. Тепло– и электропроводность золота ниже, чем у меди. Химический состав золота показан в табл. 11.1 (ГОСТ 6835-80).
Таблица 11.1
Золото
В ювелирном деле чистое золото применяется редко, в основном как сусальное для золочения. Применяются сплавы золота с медью, серебром, платиной, палладием и пр.11.1. Двухкомпонентные сплавы золота
В ювелирной промышленности иногда применяют двухкомпонентные сплавы: золото – медь и золото – серебро.
Рис. 11.1. Диаграмма состояния Сu – Аu.
Золото и медь обладают неограниченной растворимостью в жидком, а при высоких температурах и в твердом состоянии (образуют непрерывный ряд твердых растворов). Кривые плавкости начинаются от точки плавления меди (1083 °C). Точки ликвидуса и солидуса находятся ниже точек плавления чистых металлов и достигают минимума (^910 °C) при массовом соотношении компонентов 80 % Аи и 20 % Си. Диаграмма состояния золото – медь приведена на рис. 11.1.
Ниже линии солидуса в системе Аи – Си происходит упорядочение твердого раствора. Процесс упорядочения при образовании всех этих соединений, как и во всех других фазовых превращениях, происходит путем зарождения и роста выпавшей из твердого раствора фазы. Температурные условия и характер реакций, приводящих к образованию этих соединений, рассмотрены ниже.
Между областями существования AuCu и AugCu распад твердого раствора протекает по перитектоидной реакции при температуре приблизительно 230–240 °C: AuCu + твердый раствор → Au3Cu. Критическая температура для сплава стехиометрического состава определена равной 190–200 °C. При содержании в сплаве менее 25 % Си следы упорядочения отсутствуют даже после месячной выдержки при 160 °C.
Читать дальшеИнтервал:
Закладка: