Array Сборник - Интеллектуальная энергетика
- Название:Интеллектуальная энергетика
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2021
- Город:Барнаул
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Array Сборник - Интеллектуальная энергетика краткое содержание
Сборник посвящен знаменательной для России дате – одобренному 22 декабря 1920 года VIII Всероссийским съездом Советов плану Государственной Электрификации России (ГОЭЛРО) – 22.12.2020 г. исполнилось 100 лет.
В сборнике представлены научно-исследовательские работы учащихся магистратуры, вошедшие в онлайн-курс «Основы интеллектуальной энергетики», созданный при грантовой поддержке «Стипендиальной программы Владимира Потанина».
Интеллектуальная энергетика - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Далее вопрос внедрения дифференцированного тарифа будет рассмотрен с точки зрения выгоды для потребителя. Примером послужила жилая 2-ух комнатная квартира в Алтайском крае. При этом данная жилплощадь имеет электрическую плиту и располагается на территории одного из городов края. Среднее потребление электроэнергии в месяц составляет 274 кВт∙ч. Тарификация выбрана на основе данных АО «Барнаульская горэлектросеть».
Расчёт произведён для дифференцированного по двум зонам суток тарифа. Стоит оговориться, что рассмотрено для наглядности три варианта. Суммарное потребление электроэнергии с заданной квартиры за месяц выбрано за 100 процентов, а минимальный шаг для изменения соотношения – 10 процентов.
Первый вариант представляет собой распределение ежемесячного потребления электроэнергии в следующих частях – 10 процентов в дневное время и 90 процентов в ночное.
Таблица 1
Тарификация электроэнергии при 10 процентах потребления в дневное время и 90 процентах в ночное

Из таблицы видно, что при заданных условиях потребитель будет существенно экономить, в частности, потенциально сэкономленных денег (разница между выбранными системами тарификации) хватит для оплаты электроэнергии более чем за три месяца при старом одноставочном тарифе.
Во втором варианте представлена наиболее негативная ситуация, поскольку «выгодные» часы используются минимально и потребитель тратит «дорогую» электроэнергию.
Таблица 2
Тарификация электроэнергии при 90 процентах потребления в дневное время и 10 процентах в ночное

Разница между выбранными системами тарификации составляет 1131,072 рублей, что говорит о том, что выбранный вариант крайне неэффективен для потребителя, поскольку он, упрощённо можно сказать, оплачивает ещё и «тринадцатый месяц» (959 рублей стоит ежемесячная оплата при одноставочной тарификации).
Таблица 3
Тарификация электроэнергии при 50 процентах потребления в дневное время и 50 процентах в ночное

Аналогично первому и второму вариантам рассматривается третий, который включает равное процентное соотношение между дневными и ночными часами.
Как видно из таблицы, из трёх вариантов данный является наиболее оптимальным, поскольку сочетает в себе более разумное распределение потребления электроэнергии за сутки, а также приводит к экономической выгоде для потребителя.
Таким образом, можно сделать вывод, что АСКУЭ является актуальным системой, которая способствует эффективному расходованию энергоресурсов. Помимо борьбы с коммерческими потерями, она выступает активным элементом при внедрении дифференцированных по зонам суток тарифов электроэнергии.
В упрощённом виде на рассмотренном примере было выявлено, что наиболее оптимальный вариант данной дифференцированной тарификации представляет собой равное распределение потребление электроэнергии между дневными и ночными часами.
1. Об энергосбережении и о повышении энергетической эффективности, и о внесении изменений в отдельные акты Российской Федерации: Федеральный закон № 261-ФЗ: [принят Государственной думой 11 ноября 2009 года: одобрен Советом Федерации 18 ноября 2009 года]: (с изменениями на 26 июля 2019 года). – Доступ из справ. – правовой системы «КонсультантПлюс» (дата обращения: 10.11.2020). – Текст: электронный.
2. Барнаульская горэлектросеть: [сайт]. – Барнаул, 2019 —. – URL: http://bges.ru/ (дата обращения: 07.11.2020). – Текст: электронный.
Хомутов С. О. – д.т.н., профессор, Рассохина Е. О. – студент группы 8Э-01, ФГБОУ ВО «Алтайский государственный технический университет им. И. И. Ползунова», РФ, Алтайский край, г. Барнаул.
Методика формирования математических моделей для расчёта удельной мощности для помещений промышленного и общественного назначения
Тюрина Наталья Александровна, turinanatalie@yandex.ru
Грибанов Алексей Александрович, diread@mail.ru
Аннотация:
В статье подробно рассмотрен метод регрессионного моделирования для формирования математической модели расчета для последующего расчета удельной мощности для проектирования освещения в помещениях промышленного и общественного назначений. Также в статье представлен подробный расчет относительной погрешности модели.
Ключевые слова:метод удельной мощности, математическая модель, регрессионное моделирование, освещенность, источники света.
Расчет электрических нагрузок является основополагающим этапом проектирования систем электроснабжения. Электрические нагрузки подразделяются на силовые и осветительные. На сегодняшний день существуют три наиболее популярных метода расчета осветительных нагрузок: метод удельной мощности, точечный метод, метод коэффициента использования. Метод удельной мощности наиболее часто используется проектировщиками для приближенного расчета мощности осветительного оборудования, отличается простотой использования и сравнительно малым объемом исходных данных, что значительно расширяет круг его использования. Значения удельной мощности были получены в середине двадцатого столетия и, к сожалению, их использование для современных светодиодных и люминесцентных источников некорректно[1]. В ходе эксперимента мною были получены актуальные значения для таких источников.
В рамках исследования было проведено 830 экспериментов путем расчета в среде Dialux evo, рассмотрено 29 расчетных случаев. Расчетный случай – это помещение общественного и промышленного назначения, для которых определялись нормируемая освещенность, высота подвеса источников света, площадь. Помимо этого, для каждого расчетного случая было отобрано 6 источников света. Всего в эксперименте участвовало 49 источников света.
В ходе исследования были получены математические модели, для каждой из которых посчитаны относительная погрешность источника света и относительная погрешность для расчетного случая. Значения относительных погрешностей лежат в допустимом диапазоне, что позволяет в дальнейшем рассчитывать мощность источников света для проектирования освещения в помещениях промышленного и общественного назначений для входных параметров, не участвовавших в эксперименте.
Общий вид математической модели (1):
Читать дальшеИнтервал:
Закладка: