Владимир Шлома - Организация связи в сетях LTE
- Название:Организация связи в сетях LTE
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2022
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Шлома - Организация связи в сетях LTE краткое содержание
Организация связи в сетях LTE - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
– производит обработку данных и сигнализации на уровне L2 [1, гл.4],
– организует хэндоверы,
– поддерживает услуги мультимедийного вещания.
MME:
– ведет базы данных абонентов, зарегистрированных в сети,
– выбирает S-GW и PDN GW при подключении абонентов к сети,
– обеспечивает передачу и защиту сигнализации NAS (Non Access Stratum) по протоколам MM (Mobility Management) SM (Session Management) между MME и UE [1, гл.6],
– обеспечивает локализацию, аутентификацию и авторизацию абонентов,
– участвует в организации межсетевых связей и хэндоверов,
– организует вызовы UE, находящихся в состоянии IDLE,
– ведет сигнальный обмен с eNB при организации сквозных каналов.
Каждый UE, зарегистрированный в сети, обслуживает один Serving Gateway. S- GW – обслуживающий шлюз:
– выполняет функции “якоря” в визитной сети, маршрутизируя трафик при перемещениях UE в состоянии CONNECTED от одного eNB к другому (хэндовере),
– ведет базу данных абонентов, зарегистрированных в сети,
– участвует в организации сквозных каналов с eNB и PDN GW, а также сигнальных соединений с MME при регистрации абонента в сети и при выполнении процедуры локализации,
– предоставляет учетные данные для тарификации и оплаты выполненных услуг.
PDN GW:
– является “якорем” при подключении к внешним IP-сетям; ведет базу данных абонентов, подключенных к нему,
– организует точку доступа к внешним IP-сетям,
– активизирует статический IP-адрес абонента; если абонент должен получить на время сеанса связи динамический IP-адрес, PDN GW запрашивает его с сервера DHCP (Dynamic Host Configuration Protocol) или сам выполняет необходимые функции DHCP, после чего обеспечивает доставку IP-адреса абоненту,
– обеспечивает качественные характеристики услуг на внешнем соединении через интерфейс SGi и фильтрацию входящих пользовательских пакетов данных,
– организует сквозные каналы и сигнальные соединения между S-GW PDN GW,
– устанавливает требуемые качественные характеристики сквозных каналов на основе установок, полученных от PCRF, в том числе максимальные и минимальные скорости передачи данных в сквозных каналах в соответствии с качественными характеристиками передаваемого трафика QCI (QoS Class Identifier) [1, гл.7],
– ведет учёт предоставленных абонентам услуг.
PDN GW обычно находится в домашней сети абонента, а S-GW, MME и eNB в визитной. Если абонента обслуживает домашняя сеть, то PDN GW и S-GW связаны интерфейсом S5; если S-GW находится в визитной сети, а PDN GW в домашней, то между ними интерфейс S8, представляющий собой межсетевой вариант S5.
Policy and Charging Resource Function (PCRF)по сути представляет собой управляющий сервер, обеспечивающий централизованное управление ресурсами сети, учет и тарификацию предоставляемых услуг. Как только появляется запрос на новое активное соединение, эта информация поступает на PCRF. Он оценивает имеющиеся в его распоряжении ресурсы сети и направляет в PCEF (Policy and Charging Enforcement Function) шлюза PDN GW команды, устанавливающие требования к качеству услуг и к их тарификации. PCRF находится в домашней сети абонента. Согласно спецификациям PCRF является опциональным узлом, но большинство операторов строят сети с PCRF.
HSS – Home Subscriber Server, обеспечивает выполнение процедур безопасности в сети LTE, исполняя функции HLR и AuC в сетях GSM/UMTS [1, гл. 6]. HSS поддерживает сигнальную сеть IMS при организации услуг. ММЕ имеют прямой выход на HSS через интерфейс S6a по протоколу Diameter.
В сетях LTE при передаче информации в транспортной сети используют IP-технологии. Все элементы сети LTE имеют локальные IP-адреса. Сигнальные сообщения по S1 (S1 – Control Plane) следуют между eNB и MME. Подуровни L2 SCTP (Stream Control Transmission Protocol) и IP поддерживают стандартный транспорт для передачи сигнальных сообщений. В частности, SCTP обеспечивает надежность передачи и последовательность доставки сообщений.
Организация каналов в LTE
В сети LTE существуют каналы трех уровней: логические, транспортные и физические.
Логические каналы
Логические каналы по типу передаваемой информации делятся на логические каналы управления и логические каналы трафика. Логические каналы управления используются для передачи различных сигнальных и информационных сообщений. По логическим каналам трафика передают пользовательские данные. В нисходящем направлении определены пять управляющих логических каналов:
Broadcast Control Channel (BCCH)– канал, по которому передают системную информацию всем пользователям (UE), находящимся в соте. Перед входом в систему пользовательское устройство считывает информацию, которая передается по каналу BCCH, и определяет параметры сети.
Paging Control Channel (PCCH)– канал для передачи пейджинговых сообщений, которые передаются пользовательским устройствам, местоположение которых не определено с точностью до соты.
Common Control Channel (CCCH)– общий канал управления, предназначенный для решения общих для всех пользовательских терминалов задач.
Dedicated Control Channel (DCCH)– индивидуальный выделенный канал управления для обмена командными сообщениями с пользовательским терминалом.
Multicast Control Channel (MCCH)– канал передачи групповой служебной информации. Используется для передачи служебной информации необходимой при приеме канала MTCH.
И два трафиковых логических канала:
Multicast Traffic Channel (MTCH)– канал передачи трафика для выделенной группы пользовательских терминалов, используется для передачи услуги мультимедийного вещания MBMS.
Dedicated Traffic Channel (DTCH)– выделенный канал типа "точка-точка" для передачи пользовательских данных. Предназначен только для одного пользовательского терминала.
На рис. 2 приведена классификация логических каналов.

Рис. 2 Классификация логических каналов
Транспортные каналы
Информацию логических каналов после обработки на RLC/MAC уровнях размещают в транспортных каналах для дальнейшей передачи по радио интерфейсу в физических каналах. Транспортный канал определяет, как и с какими характеристиками происходит передача информации по радио интерфейсу. Информационные сообщения на транспортном уровне разбивают на транспортные блоки. В каждом временном интервале передачи (Transmission Time Interval, TTI) по радио интерфейсу передают хотя бы один транспортный блок. При использовании технологии MIMO возможна передача до четырех блоков в одном TTI.
Определены следующие транспортные каналы:
Broadcast Channel (BCH)– транспортный вещательный канал для передачи информации логического канала BCCH, имеет фиксированный формат.
Paging Channel (PCH)– транспортный канал для передачи информации логического канала PCCH. Данный канал поддерживает прием с перерывами (режим Discontinuous Reception, DRX), что позволяет пользовательскому устройству дольше сохранять заряд батареи.
Читать дальшеИнтервал:
Закладка: