Антон Первушин - Битва за звезды-2. Космическое противостояние (часть II)
- Название:Битва за звезды-2. Космическое противостояние (часть II)
- Автор:
- Жанр:
- Издательство:ООО «Издательство ACT»
- Год:2004
- Город:МОСКВА
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Антон Первушин - Битва за звезды-2. Космическое противостояние (часть II) краткое содержание
Перед вами книга, рассказывающая об одном из главных достижений XX века — космонавтике, которую весь мир считает символом прошлого столетия. Однако космонавтика стала не только областью современнейших исследований науки и достижений техники, но и полем битвы за космос двух мировых сверхдержав — СССР и США. Гонка вооружений, «холодная война» подталкивали ученых противоборствующих систем создавать все новые фантастические проекты, опережающие реальность.
Данный том посвящен истории бурного развития космонавтики во второй половине XX века, альтернативным разработкам и соперничеству между Советским Союзом и США.
Книга будет интересна как специалистам, так и любителям истории.
Битва за звезды-2. Космическое противостояние (часть II) - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Однако, несмотря на внешнюю заманчивость этой идеи «бесплатного» энергопитания силовой установки летательного аппарата, практическая ее реализация весьма сомнительна.
Действительно, при полете с очень большими, например орбитальными, скоростями такой двигатель будет обладать чрезмерно большим лобовым сопротивлением, в несколько раз превосходящим развиваемую им полезную тягу. Чтобы тяга превосходила сопротивление, скорость полета должна быть относительно небольшой, примерно в 2–4 раза больше скорости звука, но тогда возникают трудности, связанные с созданием необходимой подъемной силы, то есть удержанием летательного аппарата на данной высоте.
Другой внешний ресурс атмосферы — это электрический заряд. Известно, что в самых верхних слоях частицы воздуха ионизованы, они уже не нейтральны, как у Земли. Это наводит на мысль о том, что при полете в ионосфере можно использовать ионизованные частицы в качестве рабочего вещества электроракетных двигателей. Точнее говоря, это будут уже не электроракетные, а своеобразные электропрямоточные или ионно-прямоточные двигатели. В них будут засасываться из ионосферы заряженные частицы, точно так же как в тяговую камеру ионного ракетного двигателя поступают ионы цезия из ионного источника. Затем эти частицы будут обычным для ионных двигателей способом ускоряться и вытекать позади, создавая реактивную тягу.
Конечно же, для такого разгона снова понадобится электроэнергия.
Экономия будет лишь за счет энергии, расходуемой на ионизацию рабочего вещества в обычных ионных двигателях. Доля этой энергии в общей затрате электроэнергии в ионном двигателе обычно очень невелика, так что и экономия в энергии будет сравнительно небольшой, но дело и не в ней. Главное в том, что рабочее вещество в этом случае уже не находится на борту летательного аппарата. Однако такие аппараты смогут летать лишь на относительно небольших высотах — в разреженной атмосфере, но не в космосе.
Правда, в космосе также встречаются заряженные частицы вещества — например, в космическом излучении. Испускает подобные корпускулярные потоки и Солнце. Но их использование еще более затруднительно, хотя принципиально и возможно.
Однако электромагнитная энергия космоса вовсе не ограничивается корпускулярным излучением Солнца и звезд.
Гораздо больше по величине другие виды этой энергии. В частности, известно, что в космосе существуют весьма мощные локальные магнитные поля. Ученые связывают с воздействием этих полей природу основной части космического излучения.
Предполагают, что заряженные частицы — главным образом протоны, а также ядра атомов гелия и в небольшом числе других, более тяжелых атомов, — выброшенные в космос звездами или в результате иных процессов, затем разгоняются в космических магнитных полях. Так в гигантских природных электромагнитных ускорителях рождаются космические лучи с их колоссальной энергией, в миллиарды раз большей, чем в самых мощных циклотронах современных лабораторий.
Нельзя ли воспользоваться энергией космических магнитных полей для того, чтобы вот так же разогнать до нужных огромных скоростей межпланетный корабль? Такая идея высказывалась рядом ученых, у нас в стране — профессором Г. И. Покровским. Однако практически для реализации такой идеи нужно прежде всего найти мощные магнитные поля в космосе, узнать их расположение, конфигурацию, интенсивность, чтобы умело управлять разгоном корабля.
Очевидно, что и на этот метод использования электромагнитной энергии космоса вряд ли можно всерьез рассчитывать в ближайшее время.
Правда, одно космическое магнитное поле нам хорошо известно, и его использование кажется вполне возможным и даже в ряде случаев выгодным. Речь идет о геомагнитном поле.
В свое время в США активно обсуждалась схема геомагнитного движителя, который позволяет использовать геомагнитное поле и разреженную плазму, заполняющую околоземное пространство в ионосфере, для создания полезной движущей силы. Движитель представляет собой по существу тонкую металлическую (из алюминия, магния, бериллия или лития) проволоку очень большой длины (от 1 до 50 километров) с расположенными на ее концах контакторами; такое устройство движителя позволяет использовать его одновременно и для так называемой гравитационной ориентации в пространстве. Если электрический проводник движется с некоторой скоростью поперек силовых линий магнитного поля в заряженной среде — плазме, то в нем, очевидно, начинает течь (индуцируется) ток; проводник вместе с плазмой образует своеобразный замкнутый контур. Но взаимодействие тока с магнитным полем связано с возникновением пондеромоторной силы, которая стремится уменьшить скорость проводника, тормозит его (если проводник перпендикулярен скорости). По существу, конечно, эта тормозящая сила представляет собой также силу реакции отбрасываемой плазмы — в принципе, почти такую же, как в случае авторотирующего воздушного винта самолета. И если торможение винтом оказывается весьма полезным в авиации (например, при посадке самолета), то «магнитное торможение» в космосе также может оказаться полезным для различных маневров по изменению орбиты и положения спутника. Расчеты показывают, что такое торможение является самым эффективным, ведь оно не требует затрат рабочего вещества. Но если вместо торможения нужно получить ускоряющую силу, то ток в проводнике должен возбуждаться искусственно, для чего нужен специальный электрический генератор.
Кстати сказать, на режиме торможения этот генератор сможет уже не расходовать электрическую энергию, а вырабатывать ее, например, для питания бортовых систем спутника.
Применение геомагнитного движителя оказывается тем выгоднее, чем больше длительность полета и меньше его высота — на высотах более 10 000 километров из-за ослабления геомагнитного поля он уже практически невыгоден.
Рассмотренные выше способы использования внешних ресурсов пригодны только для полетов в пределах Солнечной системы. Для межзвездных полетов они оказываются непригодными.
Однако даже в межзвездном пространстве имеется готовый к употреблению ресурс. Это — межзвездный водород, который теоретически можно использовать в прямоточном термоядерном двигателе.
Для предварительных расчетов можно принять, что межпланетная среда состоит из водорода, находящегося в молекулярном, атомарном и ионизованном состояниях. Таким образом, основой энергетического процесса двигателя можно считать получение на борту летательного аппарата термоядерной энергии, выделяемой в результате синтеза космического водорода.
Читать дальшеИнтервал:
Закладка: