Генрих Альтов - Творчество как точная наука. Теория решения изобретательских задач

Тут можно читать онлайн Генрих Альтов - Творчество как точная наука. Теория решения изобретательских задач - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_tech, издательство Советское радио, год 1979. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Творчество как точная наука. Теория решения изобретательских задач
  • Автор:
  • Жанр:
  • Издательство:
    Советское радио
  • Год:
    1979
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.9/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Генрих Альтов - Творчество как точная наука. Теория решения изобретательских задач краткое содержание

Творчество как точная наука. Теория решения изобретательских задач - описание и краткое содержание, автор Генрих Альтов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Творчество изобретателей издавна связано с представлениями об «озарении», случайных находках и прирожденных способностях. Однако современная научно-техническая революция вовлекла в техническое творчество миллионы людей и остро поставила проблему повышения эффективности творческого мышления. Появилась теория решения изобретательских задач, которой и посвящена эта книга.

Автор, знакомый многим читателям по книгам «Основы изобретательства», «Алгоритм изобретения» и другим, рассказывает о новой технологии творчества, ее возникновении, современном состоянии и перспективах. В книге разобраны 70 задач, приведена программа решения изобретательских задач АРИЗ-77 и необходимые для ее использования материалы.

Книга рассчитана на широкий круг читателей, в первую очередь на инженеров, разработчиков новой техники, изобретателей, студентов технических вузов. На изобретательских примерах рассмотрены и вопросы управления творческим процессом вообще, поэтому книга адресована и читателям, не связанным с техническим творчеством. Особый интерес книга представляет для научных работников и исследователей в области кибернетики, искусственного интеллекта, психологии мышления.

Творчество как точная наука. Теория решения изобретательских задач - читать онлайн бесплатно полную версию (весь текст целиком)

Творчество как точная наука. Теория решения изобретательских задач - читать книгу онлайн бесплатно, автор Генрих Альтов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Физические эффекты существуют как бы сами по себе, а задача - сама по себе; в мышлении изобретателя нет надежного моста. соединяющего физику с изобретательскими задачами; знания в значительной мере простаивают, не используются.

В задачах, подобных «пистолетной», навести мост между задачей и физикой нетрудно. Сформулируем правило (его можно рассматривать как следствие того, что говорилось о переходах М - м): «Если имеешь дело с железом (или материалом, содержащим железо, или таким, в который можно ввести железо), помни, пожалуйста, что железо - не дерево, не вода, не камень, ибо каждый атом железа имеет магнитные свойства, очень легко поддающиеся управлению - обнаружению, измерению, изменению. Во второй половине XX века стыдно пользоваться сталью (а она применяется очень широко) только как массой некоего инертного вещества (грубо говоря, как палкой), надо вовлекать в игру тонкие ферромагнитные свойства железа».

Трудно сказать, сколько прекрасных изобретений появится, если инженеры начнут применять это предельно простое правило. Вот а. с. № 518 591: «Мальтийский механизм, содержащий ведущее звено и ведомый мальтийский крест, отличающийся тем, что с целью повышения срока службы ведущее звено снабжено секторами из магнитомягкого материала с установленными в них постоянными магнитами, а мальтийский крест снабжен пластинами из гистерезисного материала». Мальтийский крест - очень старый механизм. Но материал этого механизма всегда использовался грубо, на макроуровне. Механизм делали из стали, а применялась она как дерево или камень...

Задача 47

Дана пружина. Увеличивать ее размеры и заменять вещество, из которого она сделала (сталь определенной марки), нельзя. Нужен способ, позволяющий существенно повысить жесткость пружины, ничего к ней не прикрепляя (не пристраивая никаких дополнительных пружин и т. п.). Способ должен быть предельно простым.

Надо полагать, решение вы увидели раньше, чем дочитали условия задачи. Да, совершенно верно: витки пружины надо намагнитить так, чтобы одноименные полюса находились рядом и при сжатии пружины создавали дополнительную отталкивающую силу. Предложите эту задачу своим коллегам (условия задачи надо излагать слово в слово)... Приведем еще одну задачу.

Задача 48

Линию электропередач и электротехническое оборудование (например, разъединители), открыто расположенные на подстанциях, надо защищать от обледенения. С этой целью было предложено надевать на провода и защищаемое оборудование ферритовые накладки. Под действием переменного тока эти накладки быстро нагреваются и обогревают близлежащую часть провода или оборудования. Но внешняя температура меняется: иногда она выше нуля, иногда ниже. Да и вообще вдоль линии электропередачи температура зависит от множества факторов и может постоянно меняться. Что делать? Не бегать же вдоль линии, то надевая, то снимая ферритовые накладки...

Здесь «школьной» физики уже недостаточно. Нужна физика чуть более сложная-«вузовская». ИКР: ферритовые накладки сами становятся магнитными при отрицательных температурах и перестают быть магнитными, когда температура поднимается выше нуля. Физические эффекты как инструмент изобретательского творчества тем и хороши, что нередко позволяют буквально реализовать ИКР. Есть такой эффект (читатель о нем, вероятно, слышал): при переходе через определенный температурный порог (точка Кюри) магнитные свойства исчезают, при обратном переходе восстанавливаются. Следовательно, насадка должна быть сделана из феррита с точкой Кюри около 0°. Хочешь, чтобы магнит «сам собой» включался - выключался, используй переход через точку Кюри. Таких примеров могло бы быть множество, но пока изобретатели чаше ставят громоздкие и ненадежные автоматические устройства, забывая, что высшая форма регулировки - саморегулировка. Впрочем, вот а. с. № 266 029: магнитная муфта сама отключается-включается при заданной температуре; а. с. № 471 395: индукционная печь имеет «тигель, выполненный из материала, точка Кюри которого равна заданной температуре нагрева...»

О точке Кюри знают многие, менее известно, что с этой точкой связан еще один тонкий эффект. Если повышать температуру ферромагнитного вещества, то перед переходом через точку Кюри магнитные свойства веществ усиливаются. Это эффект Гопкинса. Его изобретательское применение напрашивается само собой; во многих случаях выгодно, чтобы рабочая температура совпадала с температурой, при которой наблюдается «пик Гопкинса». Вот а. с. № 452 055: «Способ повышения чувствительности измерительных магнитных усилителей, заключающийся в использовании термического воздействия на сердечник магнитного усилителя, отличающийся тем, что с целью снижения уровня магнитных шумов при работе усилителя поддерживают абсолютную температуру сердечника равной 0,92 - 0,99 температуры Кюри материала сердечника».

Есть еще более тонкий эффект, также связанный с точкой Кюри: переход через эту точку совершается не «как попало» (исчезли магнитные свойства - и все), а скачками. Каждый скачок соответствует изменению намагниченности в очень малом объеме материала (10-6 - 10-9 см3) Это эффект Баркхаузена. А вот его изобретательское применение: по а. с. № 504944 усилия на магнитный материал измеряют, подсчитывая «число скачкообразных изменений микроструктуры».

Приведенное выше правило можно теперь дополнить: «Если имеешь дело со сталью, используй не только ее механические свойства, но и магнитные. Если они уже «задействованы», используй переход через точку Кюри, эффекты Гопкинса и Баркхаузена».

Хорошо, мы сформулировали правило, которое включает хотя бы некоторые эффекты, относящиеся к магнитным свойствам веществ. А как быть с бесчисленными другими (немагнитными) эффектами, явлениями, свойствами?

По-видимому, можно сформулировать и некоторые другие правила. Одно из них было приведено в предыдущем параграфе (как осуществлять микроперемещения). И все-таки правила охватят лишь небольшую часть физических эффектов (а ведь есть еще и сочетания эффектов!). Нужна прежде всего таблица применения физических эффектов, отражающая наиболее типичные физические «ключи» к типичным изобретательским задачам. Такая таблица используется на шаге 4.3 АРИЗ-77. Разумеется, ее можно пополнить, уточнить. К таблице должен быть приложен «Указатель физических эффектов» - справочник, кратко поясняющий суть эффектов и содержащий примеры их изобретательского использования («Указатель» разработан и используется на занятиях по ТРИЗ, но его невозможно поместить в этой книге).

Итак, правила, таблицы, «Указатель»,.. И все-таки этого мало: физических эффектов можно насчитать десятки тысяч, и все они должны найти применение в правильно организованном изобретательском хозяйстве.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Генрих Альтов читать все книги автора по порядку

Генрих Альтов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Творчество как точная наука. Теория решения изобретательских задач отзывы


Отзывы читателей о книге Творчество как точная наука. Теория решения изобретательских задач, автор: Генрих Альтов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x