Николай Проскурин - Оптоэлектронные ИС: результаты макетирования, моделирования маломощных переключений элементов оптронов
- Название:Оптоэлектронные ИС: результаты макетирования, моделирования маломощных переключений элементов оптронов
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785005321015
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Николай Проскурин - Оптоэлектронные ИС: результаты макетирования, моделирования маломощных переключений элементов оптронов краткое содержание
Оптоэлектронные ИС: результаты макетирования, моделирования маломощных переключений элементов оптронов - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
2.5.1. Результаты моделирования электрических схем маломощных оптоэлектронных логических вентилей и устройств на модели оптопары К249КП1
2.5.2. Результаты моделирования мало-, микромощных логических вентилей, устройств на их основе на элементах оптопар с виртуальными параметрами.
2.6. Выводы по разделу.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ (к книгам 1 и 2)
Приложение Б.
Б.1. Методика расчета схемы маломощного оптоэлектронного инвертора (ОИ) в составе макета кольцевого «генератора импульсов».
Б.2. Погрешности измерительной аппаратуры.
Б.3.Описание моделей приборов и схем на языке МАЭС-П.
ЗАКЛЮЧЕНИЕ К КНИГЕ 2.
2. МЕТОДИКА, ИНСТРУМЕНТАРИЙ И РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ МАЛО- И МИКРОМОЩНОГО ПЕРЕКЛЮЧЕНИЯ ЭЛЕМЕНТОВ ОПТОПАР В СХЕМАХ ОПТОЭЛЕКТРОННЫХ ЛОГИЧЕСКИХ ВЕНТИЛЕЙ
2.1. Оценка предложенных схем оптоэлектронной логики nИЛИ-НЕ
В подразделе 1.4 рассмотрены оптоэлектронные схемы логики КИПТ базиса nИЛИ-НЕ c несколькими типами ФП и излучателем в виде СД. Предложенная схема «Оптический инвертор» [46] (точнее оптоэлектронный инвертор – ОИ) реализует функцию НЕ (1ИЛИ-НЕ), структурно совпадает с ОЛЭ КИПТ, но отличается конструкцией излучателя по патенту Франции 2) (оптический усилитель на многослойной ППС типа ИЛ или ЛД с оптическим возбуждением).
2 Патент 2503394 МКИ G02 F3/00 (Франция), 1982. Коммутирующий элемент оптической коммутирующей матрицы и матрица на таких элементах.
Особенностью этой ППС является то, что излучение на длине волны λ 1(мощности Р Вых.) происходит при наличии одновременно двух условий: наличия прямого тока I Пр.через р-n переход (при значении ≥ 80% величины тока его полного включения І Вкл.) и вводе в ППС внешнего излучения мощностью Р Вх.(на длине волны λ 1) опре-деленной малой мощности причем (Р Вых.>> Р Вх.), что служит энергетической добавкой – оптической «накачкой» ППС. При изменении величины тока І Вкл.на единицы процентов за счет его шунтирования, ППС прекращает излучать, что использовано в решении ОИ [46]. Преимуществом схемы является малое значение мощности внешнего сигнала, способное обеспечить гашение излучения ППС. Недостатками – наличие опорного когерентного излучателя, сложность организации сети подводящих световодов к каждой ППС, высокие требования к постоянству уровня тока І Вкл.и оптической мощности на входе ППС и параметрам ИП.
Для устранения их предложена схема ОЛЭ типа ОИ [47]. Ее отличие в том, что излучатель ОИ выполнен на основе СД, работающего в маломощном режиме, ФП – на ФР, ФТ, ФД с УФ на транзисторе и к нему может быть подключен маломощный дополнительный источник питания (ДИП) для усиления адаптивных свойств ФП (влияние ДИП на работу ОЛЭ заключается в задании напряжения смещения относительно общего провода одного из выводов ФП, см. подр. 2.2). Схема ОИ приведена на рис.2.1а с ФП на основе ФР, ее преимущества перед схемой ОИ [46] – излучатель на типовом СД, отсутствие жестких требований к значениям токов І Вкл. СД, возможность использования ФП разных типов и применение ДИП в их цепи. Схемы адаптивного типа PROS [48] (рис.2.1б), PROCOS [49] сочетают в себе схему n ИЛИ-НЕ (базис Пирса) с адаптивными ФП и имеют расширенные функциональные возможности.
Преимуществами схемы ОЛЭ PROS перед схемой ОИ [46] являются: функциональное – охват ею минимального логического базиса (универсальность); схемотехническое – использование в схемах ОЛЭ nИЛИ-НЕ базового вывода ФТр., двойного переменного резистора для обеспечения адаптивности по входам (заданием тока смещения Б транзистора) и выходам (изменением тока излучения выходных СД1, СД2); наличие неинверсного оптического выхода – СД1. Это позволяет влиять на выбор режима ФП, адаптировать (подстраивать) его к изменяющимся значениям входной оптической мощности ЦС и управлять значением выходной оптической мощности СД на логическом выходе схемы ОЛЭ.
Недостатками схем ОЛЭ КИПТ [15,48,49] является их усложнение (увеличение количества элементов, связей) – общее количество элементов в устройствах растет пропорционально n – числу входных переменных. В схеме ОЛЭ nИЛИ-НЕ типа SUPROSTD [50] на n оптических входов (соединенных между собой по схеме У – образного оптического ответвителя) использован один ФП (функция «монтажного»» оптического ИЛИ на n входов, см. рис.2.1в). Это схемотехническое решение применимо в некоторых схемах ОЛЭ, при этом количество логических входов схемы равно n, логических выходов – один, количество ФП – один, общее количество элементов – три. Мало- и микромощные схемы nИЛИ-НЕ [47—50] в интегральном исполнении могут быть основой при создании ИС с оптическими связями.

В следующем подразделе приведены характеристики программ моделирования – современного инструмента для изучения и разработки оптоэлектронных устройств.
2.2. Особенности программных сред для моделирования электронных схем
Автоматизированные системы управления технологическим проектированием устройств электронной техники получили широкое распространение [51—60]. Их применение связано с возможностями математически описать физические процессы (проходящие в схемах и устройствах на их основе) любой сложности на языке математических зависимостей, что позволяет с достаточной точностью проектировать и проводить исследование моделей. Преимуществами программных сред (ПС) схемотехнического моделирования типа Micro-CapV, Electronics Work Bench-5.12 (EWB) [54,55] являются: адаптированный многооконный интерфейс пользователя, библиотека моделей (БМ) аналоговых и цифровых устройств (совместима с РSpice), интерфейс со стандартными приложениями (Windows). Программа EWB характеризуется дополнительной возможностью изменения параметров компонентов схем, отличается управлением точностью расчета, созданием отчетов моделирования, встраиваемые виртуальные приборы (для визуализации процессов – определения значений токов, напряжений, получения осциллограмм в узлах схем, др.). Это позволяет реализовать систему типа «рабочий стол» с качественным и количественным анализом ряда электронных схем при приемлемой точности моделирования. Указанные ПС применяются в качестве инструмента построения, моделирования (эмулирования) и демонстрации поведения несложных электронных схем, измерения и оценки полученных параметров в процессе обучения студентов электронных специальностей, что является их преимуществом. Недостатком их является невозможность ввода аналоговых, цифровых компонентов (диодов, транзисторов, оптопар, ИС, др.), отсутствующих в БМ – например, с расчетными параметрами.
Наибольшее развитие для разработки электронной аппаратуры на ПК в странах СНГ (наряду с отечественными разработками) получили ПС типа P-CAD, РSpice [56]. Они предназначены для решения следующих задач: графический ввод принципиальных схем, моделирование цифровых и аналоговых устройств, проектирование программируемых логических ИС, разработка печатных плат (размещение компонентов и трассировка печатных проводников) и др.. В 2001г. выпущена версия OrCAD 9.2, которая объединила ПС моделирования цифровых, аналоговых устройств и обеспечила их оптимизацию с графическим схемным редак-тором. В состав версии OrCAD 9.2 входят 10 программных модулей, информация о которых представлена в источнике [57]. Популярность ПС связана с развитыми функциями сервиса для проектирования, моделирования электронных схем, составления технической и проектной документации, развитием средств Internet для пополнения и информационной поддержки десятков тысяч математических моделей цифровых, аналоговых электронных устройств, входивших в базовый комплект. Каталоги БМ и корпусов компонентов пополняются моделями элементов, приборов, схем фирмами производителями (Analog Devices, Linear Technology, Siemens, Texas Instruments, др.), что обеспечивает выбор элементной базы, но связывает разработ-чика только с существующими моделями, а через них – с конкретными производителями электронных изделий. Недостатком указанных ПС являются закрытость внутренних параметров моделей, ограничение возможностей создания новых приборов на их основе, отсутствие инструмента моделирования электронных компонентов с расчетными параметрами [57]. Вопрос ввода расчетных параметров новых устройств в модель после их формализации (например, ввода характеристик ППС – СД и ФП микромощной оптопары ОВЧ диапазона) не решается на основе таких ПС. Причина – жесткая их связь с существующими БМ и закрытыми для пользователя описаниями в них моделей электронных элементов (в виде «черного ящика»), которые разрабатывает и пополняет за плату производитель электронного изделия.
Читать дальшеИнтервал:
Закладка: